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Overview

Neural networks (NNs) are key
machine learning technologies

> Artificial intelligence
> Self-driving cars

> Speech recognition
> Face ID

> and more smart stuff ...
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Motivation
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Modern neural networks suffer from parameter explos

Typical
deep
CNN
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Training can take weeks on CPU

Cloud GPU resources are expensive

gl \icrosoft
Wl Azure

aZzon

Services

Fully connected (FC) Multilayer Perceptron (MLP)

Google Cloud Platform
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The Complexity Conundrum

Storage and
computational complexity
dominated by weights

All the weights are used in
all 3 operations

Sourya Dey

Feedforward
(FF)

Backpropagation
(BP)

Update parameters
(UP)
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Our Work:
Pre-defined Sparsity

Pre-define a sparse connection
pattern prior to training

Use this sparse network for both
training and inference
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training and inference
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Our Work:
Pre-defined Sparsity

Pre-define a sparse connection
pattern prior to training

Use this sparse network for both
training and inference

Reduced training
and inference
complexity
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Motivation behind pre-defined sparsity
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In a FC network, most weights are very small in magnitude after training
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Pre-defined sparsity performance on MLPs
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S. Dey, K. M. Chugg and P. A. Beerel, “Morse Code
Datasets for Machine Learning,” in ICCCNT 2018.

: ; } : ! Morse Sym bOIS Won Best Paper award.
0 20 40 60 80 100 https://github.com/usc-hal/morse-dataset

Overall Density (%)

Sourya Dey University of Southern California 9


https://github.com/usc-hal/morse-dataset

=

Ana\y5|s and
Appllcatlons

Deep dive into pre-defined spar5|ty
~ for MLPs and a corresponding
2 hardware architecture for both




Designing pre-defined sparse networks

A pre-defined sparse connection
pattern is a hyperparameter to be
set prior to training

Find trends and guidelines to optimize
pre-defined sparse patterns

S. Dey, K. Huang, P. A. Beerel and K. M. Chugg, "Pre-Defined
Sparse Neural Networks with Hardware Acceleration,"

in IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 2, pp. 332-345, June 2019.
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Individual junction densities
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Latter junctions (closer to the output) need to be denser
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Each curve keeps p, fixed and
varies p_., by varying p,

For the same p, ., p,> P,
improves performance

Mostly similar trends observed
for deeper networks
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Dataset redundancy

0 5 10 15 20 25

High redundancy

Sourya Dey

14



Dataset redundancy

0 5 10 15 20 25

: MNIST
High redundancy defgult
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Effect of
redundancy
on sparsity

Reducing redundancy leads to
increased performance
degradation on sparsification

Sourya Dey
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Original: 39 MFCCs
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(b) Reuters

Original: 2000 tokens
Nnet = (2000, 50, 50)

Tokens reduced to 400
Nnet = (400, 50, 50)
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(d) CIFAR-100

Original: 6-layer CNN
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‘Large sparse’ vs ‘small dense’ networks

A sparser network with more hidden nodes will
outperform a denser network with less hidden nodes,
when both have same number of weights

Sourya Dey University of Southern California
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‘Large sparse’ vs ‘small dense’ networks

Networks with same number of parameters go from bad

to good as #nodes in hidden layers is increased
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Regularization

C(‘w) = Co(w) + A ||Jwl|;

\ 4
Regularized cost

\ 4
Original unregularized

cost (like cross-entropy)

v
Regularization term

Sourya Dey University of Southern California
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Regularization

Pre-defined sparse networks need
smaller A (as determined by validation)

C(w) = Co(w) + A ||Jwlf3

‘ Overall Density
v 100 % 1.1 x 10-4
Regularized cost 40 % 5.5 x 105
v 11% 0

Original unregularized

_ Example for MNIST 2-junction networks
cost (like cross-entropy)

\ 4
Regularization term

Pre-defined sparsity reduces the
overfitting problem stemming from
over-parametrization in big networks
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Hardware Architecture

We built a customized hardware architecture to leverage pre-defined sparsity

Key highlights:

> On-device training

> Edge-based

> Customizable amount of parallelism
> Clash free memory accesses

> Pipelined processing

Sourya Dey University of Southern California 19



Degree of parallelism z

Edge Interleaver

Example z,= 3

Sourya Dey

z;: = #edges (weights) processed in parallel in junction i

#weights ‘ |14 ‘

#clock cycles (C;) to process junction i =
Zj

Computational complexity depends only on z,

Decouple hardware required from network complexity

Hardware
Intensive

University of Southern California F I eXi bi | ity 20
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Memory organization and clash freedom

Must access each memory no more

z: memories for storing each
than once per clock cycle,

variable in each junction

otherwise clash => processing stall

Edge Interleaver § $ @ql p g

co----- 1| Interleaved Left side nodes are accessed in

! ! order arbitrary order due to interleaving

| |

! ! . Dey, P. A. Beerel and K. M. Chugg, “Interleaver

! FFO FF1 FF2 Ze?ig»:l fof\dzep neural nKex/ocrksf?n 5I1;[tAnnuaI

|

Asilomar Conference on Signals, Systems, and
Computers (ACSSC), pp. 1979-1983, Oct 2017.

Natural
order Weights are accessed one row at a time

e - o o o -

Example z, = 3
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Parallel and Pipelined processing

> FF, BP, UP operates only on

Operational

Parallelism weights which are present
n+L n+L-1 2 > QOperational parallelism: FF
| ! . J}
—( FF FF —>- - -—» FF —>| FF .
n+L+1 Ll ; - BP, UP simultaneously

inside a junction

> Junction pipelining: Each
T operates on different inputs
. . Fflg’;lcﬂﬁ]’; across junctions
e SRLLUE N —— > Faster training @ more
hardware and storage cost

Sourya Dey University of Southern California



L 4

Automate the design of CNNs
with good performance and
low complexity
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| plan to graduate in May 2020 and
| | am looking for post-doc openings

Thank you: - * (primarily on the algorithmic /

software side of deep learning)




