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Pre-Defined Sparsity  
 

Reduce complexity of neural 
networks with minimal performance 

degradation
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Overview

Neural	networks	(NNs)	are	key	
machine	learning	technologies	

➢ Artificial	intelligence	

➢ Self-driving	cars	

➢ Speech	recognition	

➢ Face	ID	

➢ and	more	smart	stuff	…
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Motivation

Training	can	take	weeks	on	CPU	

Cloud	GPU	resources	are	expensive

Fully	connected	(FC)	Multilayer	Perceptron	(MLP)

Typical	

deep	

CNN

Modern	neural	networks	suffer	from	parameter	explosion
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The Complexity Conundrum

Feedforward	

(FF)

Backpropagation	

(BP)

Update	parameters	

(UP)

Storage	and	
computational	complexity	
dominated	by	weights	

All	the	weights	are	used	in	
all	3	operations
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Our Work:  
Pre-defined Sparsity

Pre-define	a	sparse	connection	

pattern	prior	to	training	
Use	this	sparse	network	for	both	

training	and	inference
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Our Work:  
Pre-defined Sparsity

Pre-define	a	sparse	connection	

pattern	prior	to	training	
Use	this	sparse	network	for	both	

training	and	inference

Structured	Constraints:	

Fixed	in-,	out-degrees	

for	every	node
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Our Work:  
Pre-defined Sparsity
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compared	to	FC
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Our Work:  
Pre-defined Sparsity

Pre-define	a	sparse	connection	

pattern	prior	to	training	
Use	this	sparse	network	for	both	

training	and	inference

Overall	Density	

compared	to	FC

Structured	Constraints:	

Fixed	in-,	out-degrees	

for	every	node

Reduced	training	

and	inference	
complexity
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Motivation behind pre-defined sparsity

In	a	FC	network,	most	weights	are	very	small	in	magnitude	after	training
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Pre-defined sparsity performance on MLPs
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Starting	with	only	20%	
of	parameters	reduces	
test	accuracy	by	just	1%
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Pre-defined sparsity performance on MLPs

Sourya	Dey �9

Starting	with	only	20%	
of	parameters	reduces	
test	accuracy	by	just	1%

MNIST	handwritten	digits

Reuters	news	articles

TIMIT	phonemes

CIFAR	images

Morse	symbols

S.	Dey,	K.	M.	Chugg	and	P.	A.	Beerel,	“Morse	Code	

Datasets	for	Machine	Learning,”	in	ICCCNT	2018.	

Won	Best	Paper	award.	
https://github.com/usc-hal/morse-dataset

https://github.com/usc-hal/morse-dataset


Analysis and 
Applications  

 
Deep dive into pre-defined sparsity 

for MLPs and a corresponding 
hardware architecture for both 

training and inference
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Designing pre-defined sparse networks

A	pre-defined	sparse	connection	
pattern	is	a	hyperparameter	to	be	

set	prior	to	training

Find	trends	and	guidelines	to	optimize	

pre-defined	sparse	patterns
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S.	Dey,	K.	Huang,	P.	A.	Beerel	and	K.	M.	Chugg,	"Pre-Defined	

Sparse	Neural	Networks	with	Hardware	Acceleration,"	

in	IEEE	Journal	on	Emerging	and	Selected	Topics	in	Circuits	
and	Systems,	vol.	9,	no.	2,	pp.	332-345,	June	2019.
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Individual junction densities

Latter	junctions	(closer	to	the	output)	need	to	be	denser
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Individual 
junction 
densities

Each	curve	keeps	!
2
	fixed	and	

varies	!
net
	by	varying	!

1	

For	the	same	!net	,	!2	>	!1	
improves	performance
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Mostly	similar	trends	observed	

for	deeper	networks
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High	redundancy

Low	
redundancy

Dataset redundancy
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High	redundancy

Low	
redundancy

Dataset redundancy

MNIST	with	

default	784	

features

MNIST	reduced	

to	200	features	

Wider	spread

Less	redundancy	=>	Less	
sparsification	possibleSourya	Dey �14
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Effect of 
redundancy 
on sparsity

Reducing	redundancy	leads	to	
increased	performance	
degradation	on	sparsification
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‘Large sparse’ vs ‘small dense’ networks

A	sparser	network	with	more	hidden	nodes	will	
outperform	a	denser	network	with	less	hidden	nodes,	
when	both	have	same	number	of	weights
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‘Large sparse’ vs ‘small dense’ networks
Networks	with	same	number	of	parameters	go	from	bad	

to	good	as	#nodes	in	hidden	layers	is	increased
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Regularization
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Regularized	cost

Original	unregularized	

cost	(like	cross-entropy)

Regularization	term
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Regularization
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Regularized	cost

Original	unregularized	

cost	(like	cross-entropy)

Regularization	term

Pre-defined	sparse	networks	need	

smaller	λ	(as	determined	by	validation)

Pre-defined	sparsity	reduces	the	
overfitting	problem	stemming	from	
over-parametrization	in	big	networks

Overall	Density λ

100	% 1.1	x	10-4

40	% 5.5	x	10-5

11	% 0

Example	for	MNIST	2-junction	networks
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Hardware Architecture

We	built	a	customized	hardware	architecture	to	leverage	pre-defined	sparsity	

Key	highlights:	

➢ On-device	training	

➢ Edge-based	

➢ Customizable	amount	of	parallelism	

➢ Clash	free	memory	accesses	

➢ Pipelined	processing
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Degree of parallelism z

zi	=	#edges	(weights)	processed	in	parallel	in	junction	i

Slow	

Training

Hardware	

Intensive
z

Flexibility

Example	zi	=	3

#clock cycles (!") to process junction i  =  
#weights  #"

$"

Computational	complexity	depends	only	on	z
i

Decouple	hardware	required	from	network	complexity
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Memory organization and clash freedom

Left	side	nodes	are	accessed	in	

arbitrary	order	due	to	interleaving

zi	memories	for	storing	each	
variable	in	each	junction

Example	zi	=	3

Weights	are	accessed	one	row	at	a	time

Must	access	each	memory	no	more	
than	once	per	clock	cycle,	
otherwise	clash	=>	processing	stall
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S.	Dey,	P.	A.	Beerel	and	K.	M.	Chugg,	“Interleaver	

design	for	deep	neural	networks,”	in	51st	Annual	
Asilomar	Conference	on	Signals,	Systems,	and	
Computers	(ACSSC),	pp.	1979-1983,	Oct	2017.
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Parallel and Pipelined processing

➢ FF,	BP,	UP	operates	only	on	
weights	which	are	present	

➢ Operational	parallelism:	FF,	
BP,	UP	simultaneously	

inside	a	junction	

➢ Junction	pipelining:	Each	
operates	on	different	inputs	

across	junctions	

➢ Faster	training	@	more	

hardware	and	storage	cost
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Model Search  
 

Automate the design of CNNs 
with good performance and 

low complexity
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Model search is ongoing 
research, hence currently 
not available publicly
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Thank you!
I	plan	to	graduate	in	May	2020	and	
am	looking	for	post-doc	openings	
(primarily	on	the	algorithmic	/	
software	side	of	deep	learning)


