

Exploring Complexity Reduction in Deep Learning

Sourya Dey

PhD Candidate, University of Southern California Advisors: Peter A. Beerel and Keith M. Chugg

November 18, 2019

<mark>USC</mark> Viterbi

School of Engineering Ming Hsieh Department of Electrical and Computer Engineering

Outline

Pre-Defined Sparsity

Reduce complexity of neural networks with minimal performance degradation

Overview

Neural networks (NNs) are key machine learning technologies

- ➤ Artificial intelligence
- ➤ Self-driving cars
- > Speech recognition
- ≻ Face ID
- \succ and more smart stuff ...

Modern neural networks suffer from parameter explosion

Fully connected (FC) Multilayer Perceptron (MLP)

Training can take weeks on CPU Cloud GPU resources are expensive

Google Cloud Platform

Sourya Dey

The Complexity Conundrum

Storage and computational complexity dominated by weights

All the weights are used in

all 3 operations

 $\begin{array}{ll} & \mbox{Feedforward} & \displaystyle\sum_{\forall i,j} W_{ij} a_j \\ & \mbox{Backpropagation} & \displaystyle\sum_{\forall i,j} W_{ij} \delta_i \\ & \mbox{Update parameters} & W_{ij} - \eta \nabla_{W_{ij}} C \quad \forall i,j \end{array}$

Pre-define a sparse connection pattern **prior to training**

Pre-define a sparse connection pattern **prior to training**

Pre-define a sparse connection pattern **prior to training**

Pre-define a sparse connection pattern **prior to training**

Pre-define a sparse connection pattern **prior to training**

Use this sparse network for both training and inference

 $N_{\rm net} = (8, 4, 4)$ $\boldsymbol{d}_{\mathrm{net}}^{\mathrm{out}} = (1,2)$ **Structured Constraints:** $d_{net}^{in} = (2,2) \int_{for overvice de}^{Fixed in-, out-degrees}$ for every node

Pre-define a sparse connection pattern **prior to training**

$$N_{net} = (8, 4, 4)$$

$$d_{net}^{out} = (1, 2)$$

$$d_{net}^{in} = (2, 2)$$
Fixed in-, out-degrees for every node
$$\rho_1 = \frac{8 \times 1}{8 \times 4} = 25\%$$

$$\rho_2 = \frac{4 \times 2}{4 \times 4} = 50\%$$

$$\rho_{net} = \frac{8 + 8}{32 + 16} = 33\%$$
Overall Density compared to FC

Pre-define a sparse connection pattern **prior to training**

Use this sparse network for both training and inference

Reduced training *and* inference complexity

Sourya Dey

Motivation behind pre-defined sparsity

In a FC network, most weights are very small in magnitude after training

Sourya Dey

University of Southern California

Pre-defined sparsity performance on MLPs

Starting with only 20% of parameters reduces test accuracy by just 1%

Pre-defined sparsity performance on MLPs

Sourya Dey

University of Southern California

Analysis and Applications

Deep dive into pre-defined sparsity for MLPs and a corresponding hardware architecture for both training and inference

Designing pre-defined sparse networks

A pre-defined sparse connection pattern is a **hyperparameter** to be set prior to training

Find trends and guidelines to optimize pre-defined sparse patterns

S. Dey, K. Huang, P. A. Beerel and K. M. Chugg, "Pre-Defined Sparse Neural Networks with Hardware Acceleration," in *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, vol. 9, no. 2, pp. 332-345, June 2019.

Individual junction densities

Latter junctions (closer to the output) need to be denser

University of Southern California

Individual junction densities

Each curve keeps $\rho_{\rm 2}$ fixed and varies $\rho_{\rm net}$ by varying $\rho_{\rm 1}$

For the same ρ_{net} , $\rho_2 > \rho_1$ improves performance

Mostly similar trends observed for deeper networks

40

ρ₂ (%)

100 20

50

Dataset redundancy

Effect of redundancy on sparsity

Reducing redundancy leads to increased performance degradation on sparsification

'Large sparse' vs 'small dense' networks

A sparser network with more hidden nodes will outperform a denser network with less hidden nodes, when both have same number of weights

'Large sparse' vs 'small dense' networks

Networks with same number of parameters go from bad to good as #nodes in hidden layers is increased

University of Southern California

Regularization

$$C(\boldsymbol{w}) = C_0(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2$$

Regularized cost
Original unregularized
cost (like cross-entropy)
Regularization term

Regularization

$$C(\boldsymbol{w}) = C_0(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2$$

Regularized cost
Original unregularized
cost (like cross-entropy)
Regularization term

Pre-defined sparse networks need smaller λ (as determined by validation)

Overall Density	λ
100 %	1.1 x 10-4
40 %	5.5 x 10 ⁻⁵
11 %	0

Example for MNIST 2-junction networks

Pre-defined sparsity reduces the overfitting problem stemming from over-parametrization in big networks

Hardware Architecture

We built a customized hardware architecture to leverage pre-defined sparsity

Key highlights:

- > On-device training
- ➤ Edge-based
- ➤ Customizable amount of parallelism
- Clash free memory accesses
- > Pipelined processing

Degree of parallelism z

z_i = #edges (weights) processed in parallel in junction i

Edge Interleaver

#weights #clock cycles (C_i) to process junction i = Z_i

Computational complexity depends only on z_i

Decouple hardware required from network complexity

Example $z_i = 3$

Sourya Dey

Memory organization and clash freedom

z_i memories for storing each

variable in each junction

Must access each memory no more than once per clock cycle, otherwise clash => processing stall

A Left side nodes are accessed in arbitrary order due to interleaving

S. Dey, P. A. Beerel and K. M. Chugg, "Interleaver design for deep neural networks," in *51*st Annual Asilomar Conference on Signals, Systems, and Computers (ACSSC), pp. 1979-1983, Oct 2017.

Weights are accessed one row at a time

Example $z_i = 3$

Parallel and Pipelined processing

- FF, BP, UP operates only on weights which are present
- Operational parallelism: FF,
 BP, UP simultaneously
 inside a junction
- Junction pipelining: Each operates on different inputs across junctions
- Faster training @ more hardware and storage cost

Model Search

Automate the design of CNNs with good performance and low complexity Model search is ongoing research, hence currently not available publicly

Thank you!

I plan to graduate in May 2020 and am looking for post-doc openings (primarily on the algorithmic / software side of deep learning)