Interleaver Design for Deep Neural Networks

Sourya Dey, Peter Beerel, Keith Chugg Asilomar Conference on Signals, Systems, and Computers Oct-Nov 2017

Overview of Current DNNs

Key machine learning technologies

- Lot of parameters Memory intensive
- Slow to train Computationally intensive
- Training done offline in CPU/GPU
- Custom hardware used for inference only

2

Typical Supervised Network

Sourya Dey, USC

neural networks. In: NIPS-2012, pp. 1097-1105 (2012) Zhang, C., Wu, D., Sun, J., Sun, G., Luo, G., Cong, J.: Energy-efficient CNN implementation on a deeply pipelined FPGA cluster. In: ISLPED-2016. pp. 326- 331. ACM, New York (2016)

3

Overview of our Research

- Predefined sparsity Memory friendly
 - 2-3x savings on CL only network parameters
 - > 2 orders of magnitude savings on CL parameters of CNNs *

- Edge-based processing Computationally flexible
- Hardware optimizations Fast training

FPGA based architecture - Online training and inference

Dey, S., Shao, Y., Chugg, K.M., Beerel, P.A.: Accelerating Training of Deep Neural Networks via Sparse Edge Processing. In: Proc. ICANN-2017, pp. 273-280. LNCS (2017) * Dey, S., Huang, K.W., Beerel, P.A., Chugg, K.M.: Characterizing Sparse Connectivity Patterns in Neural Networks. In: ICLR-2018 (submitted for publication)

5

Sourya Dey, USC

Fully connected (FC) network

Fully connected (FC) network Fanout (*fo*) = 4

Sourya Dey, USC

Fully connected (FC) network Fanout (*fo*) = 4 Fanin (*fi*) = 8

Fully connected (FC) network Fanout (*fo*) = 4 Fanin (*fi*) = 8 Connectivity = 100%

Fully connected (FC) network Fanout (*fo*) = 4 Fanin (*fi*) = 8 Connectivity = 100%

Sparse network fo = 1, fi = 2 Connectivity = 25%

Sparsity - Predefined

Fully connected (FC) network Fanout (*fo*) = 4 Fanin (*fi*) = 8 Connectivity = 100% Sparse network fo = 1, fi = 2Connectivity = 25%

Sourya Dey, USC

Example of Parameter Savings

7

Present Work -Interleavers for Sparse Patterns

Present Work -Interleavers for Sparse Patterns

Present Work -Interleavers for Sparse Patterns

Interleaver algorithm ensures:

- Each output connected to a good spatial chunk of different inputs
- No neuron unconnected

Interleaver Requirements

- Optimized for computational efficiency in hardware
- Optimized for on-chip storage
- High values for metrics which are performance indicators

9

Degree of Parallelism = z

- z memories for all parameters of same type
- Process z parameters in 1 cycle => 1 from each mem
- Process all parameters in a sweep

Mem 0	Mem 1			Mem z-1
W ₀	W ₁	w ₂		W _{z-1}
Wz				
W _{2z}				
W _{3z}				W _{W-1}

Clash Freedom

- E.g. *p* activations, so depth of each memory = p/z
- Accessed in interleaved (permuted order)

Interleaver must prevent clashes when accessing activations

Cycle 2

- Let r be a random permutation of memory row index => Size p/z $\pi_W(i) = \left(t[i\%p] \times z + i\%z\right) \times fo + \lfloor i/p \rfloor$
- Replicate or partition r to form s of z elements => Starting indices of all mems
- t = {s, s+1, ..., s+p/ z-1}%(p/z) => All p indices for all mems in order

Example:
$$p=32$$
, $fo=2$, $z=8 \Rightarrow i \in [0,63]$. Say $i = 45$

Let r be a random permutation of memory row index => Size p/z

$$\pi_W(i) = \left(t\left[i\%p\right] \times z + i\%z\right) \times fo + \lfloor i/p$$

- Replicate or partition r to form s of z elements => Starting indices of all mems
- t = {s, s+1, ..., s+p/ z-1}%(p/z) => All p indices for all mems in order

- Let r be a random permutation of memory row index => Size p/z
- Replicate or partition r to form s of z elements => Starting indices of all mems
- t = {s, s+1, ..., s+p/ z-1}%(p/z) => All p indices for all mems in order

Example:
$$p=32$$
, $fo=2$, $z=8 \Rightarrow i \in [0,63]$. Say $i = 45$
$$\pi_W(i) = \left(t [i\%p] \times z + i\%z\right) \times fo + \lfloor i/p \rfloor$$

Activation Memory Bank Row = 45%32 = 1

Row1 a_8 a_9 a_{10} a_{11} a_{12} a_{13} a_{14}	a ₁₅
--	-----------------

- Let r be a random permutation of memory row index => Size p/z
- Replicate or partition r to form s of z elements => Starting indices of all mems
- t = {s, s+1, ..., s+p/ z-1}%(p/z) => All p indices for all mems in order

Example:
$$p=32$$
, $fo=2$, $z=8 \Rightarrow i \in [0,63]$. Say $i = 45$
 $\pi_W(i) = \left(t[i\%p] \times z + i\%z\right) \times fo + \lfloor i/p$
Activation Memory Bank Row = 45%32 = 1
Row1 a₈ a₉ a₁₀ a₁₁ a₁₂ a₁₃ a₁₄ a₁₅
a₁₃ Left side Neuron = 1x8+45%8 = 13

- Let r be a random permutation of memory row index => Size p/z
- Replicate or partition r to form s of z elements => Starting indices of all mems
- t = {s, s+1, ..., s+p/ z-1}%(p/z) => All p indices for all mems in order

Example:
$$p=32$$
, $fo=2$, $z=8 \Rightarrow i \in [0,63]$. Say $i = 45$

$$\pi_{W}(i) = \left(t\left[i\% p\right] \times z + i\% z\right) \times fo + \lfloor i/p$$
Activation Memory Bank Row = 45%32 = 1
Row1 a₈ a₉ a₁₀ a₁₁ a₁₂ a₁₃ a₁₄ a₁₅
a₁₃ Left side Neuron = 1x8+45%8 = 13
Left side Neuron's Weight = 13x2 = 26
a₁₃
 ψ_{zz}

- Let r be a random permutation of π memory row index => Size p/z
- Replicate or partition r to form s of z elements => Starting indices of all mems
- t = {s, s+1, ..., s+p/ z-1}%(p/z) => All p indices for all mems in order

Example:
$$p=32$$
, $fo=2$, $z=8 \Rightarrow i \in [0,63]$. Say $i = 45$

$$\pi_{W}(i) = \left(t\left[i\% p\right] \times z + i\% z\right) \times fo + \lfloor i/p \rfloor$$
Activation Memory Bank Row = 45%32 = 1
 $\boxed{\text{Row1} \quad a_{9} \quad a_{10} \quad a_{11} \quad a_{12} \quad a_{33} \quad a_{14} \quad a_{15}}$

$$a_{13} \text{ Left side Neuron = 1x8+45\%8 = 13}$$

$$\underbrace{\text{How 1} \quad \text{Left side Neuron's Weight = 13x2 = 26}}_{Weight Offset = 1}$$

- Let r be a random permutation of memory row index => Size p/z
- Replicate or partition r to form s of z elements => Starting indices of all mems
- t = {s, s+1, ..., s+p/ z-1}%(p/z) => All p indices for all mems in order

Meeting Requirements

- Easily generated Proof in paper
 - All variables involved are powers of 2 (add extra neurons)
 - Modulo = Bit select
 - Multiply = Bit shift
 - Only store r for a new pattern
 - Create t by accumulating 1s
- Clash freedom Proof in paper

Variations

Start Vector Shuffle (SV)

Original: *s* = {2,0,3,1,2,0,3,1} After SV: *s* = {2,0,3,1,**3,0,1,2**}

Sweep Starter Shuffle (SS)

Original: 1st sweep *s* = {2,0,3,1,2,0,3,1} 2nd sweep *s* = {2,0,3,1,2,0,3,1} After SS: 1st sweep *s* = {2,0,3,1,3,0,1,2} 2nd sweep *s* = {**0,3,2,1,0,3,2,1**}

Memory Dither (MD)

$$\pi_{W}(i) = \left(t\left[i\% p\right] \times z + \boldsymbol{v}[i\% z]\right) \times fo + \lfloor i/p \rfloor$$

v[.] = Permutation of [0,z-1]

Some Weight Interleaver Patterns

Spread and Dispersion

- Spread: Connections that are close on 1 side should be far away on other
- Dispersion: Connections should be irregular, i.e. no patterns or trends

Interleaver Variant	Spread	Dispersion
Basic	18.28	0.04
MD	7.48	0.22
SS	9.7	0.07
SS + MD	6.5	0.37
SV	6.6	0.08
SV + MD	7.31	0.23
SV + SS	5.05	0.09
SV + SS + MD	5.7	0.39

Dataset Results

* Sourya Dey: https://cobaltfolly.wordpress.com/2017/10/15/morse-code-dataset-for-artificial-neural-networks/

Morse Dataset Trends

Morse has fewer inputs and low redundancy Spread should be high, dispersion hurts

Summary and Ongoing Work

- Pre-defined sparse hardware architecture to lower memory and computational footprint
- Interleaver algorithm to guarantee clash freedom and ease of storage
- Interleaver variations and effects on performance

- Extension to multiple junctions Adjacency matrices
- Measures to characterize network performance

Dey, S., Huang, K.W., Beerel, P.A., Chugg, K.M.: Characterizing Sparse Connectivity Patterns in Neural Networks. In: ICLR-2018 (submitted for publication)

Thank you!

Questions?

Contact: souryade@usc.edu