

Deep-n-Cheap

Sourya Dey USC HAL research group

Deep Learning guest lecture April 6th, 2020

Outline

- Our understanding of NNs is at best vague, at worst, zero!
- NNs take a lot of time to train. Time = Money!

Motivation

- Deep neural networks have a lot of hyperparameters
 - How many layers?
 - How many neurons?
 - Learning rate
 - Batch size
 - and more...

Hyperparameters

AutoML (Automated Machine Learning)

- Software frameworks that play the role of the designer
- Given a problem, search for NN models

Jin 2019 – Auto-Keras

Mendoza 2018 – Auto-PyTorch

Our Work

Deep-n-Cheap

Low Complexity AutoML framework

Reduce training complexity

Target custom datasets and user requirements

Supports CNNs and MLPs

Fromowork	Architactura soorch space	Training	Adjust model	
Framework	Architecture search space	hyp search	complexity	
Auto-Keras	Only pre-existing architectures	No	No	
AutoGluon	Only pre-existing architectures	Yes	No	
Auto-PyTorch	Customizable by user	Yes	No	
Deep-n-Cheap	Customizable by user	Yes	Penalize $t_{\rm tr}, N_p$	

t_{tr} = Training time / epoch N_p = # Trainable parameters

Approach

Search Objective

Optimize performance and complexity

Modified loss function: $f(NN \text{ Config } \mathbf{x}) = \log(f_p + w_c^* f_c)$

Example config **x**: [#layers, #channels] = [3, (29,40,77)]

 $f_{\rho} = 1$ - (Best Validation Accuracy) $f_{c} = \text{Normalized } t_{tr} \text{ or } N_{\rho}$ $= t_{tr}(\text{config}) / t_{tr}(\text{baseline})$

Slow search process

Three-stage search process

Examples of Stage 2

Bayesian Optimization Workflow

- Sample some initial data **X**_{1:n1} and find f(**X**_{1:n1})
- Form prior to approximate f. This is a *Gaussian process* with μ_{n1x1} , Σ_{n1xn1}
- Repeat for n2 steps:
 - Sample new points X'_{1:n3}
 - Find *expected improvement* EI(**x**') for each new point and choose **x**_{n1+1} = argmax EI(**x**')
 - Form *posterior* to approximate f :
 - Augment $\mathbf{X}_{1:n1}$ to $\mathbf{X}_{1:n1+1}$
 - Find f(**x**_{n+1})
 - Augment μ_{n1x1} to $\mu_{(\text{n1+1})\text{x1}}$, $\boldsymbol{\Sigma}_{\text{n1xn1 to}}\,\boldsymbol{\Sigma}_{(\text{n1+1})\text{x(n1+1)}}$

Total configs explored: n1 + n2*n3 Total configs trained: n1 + n2

• Finally, return best f and corresponding best **x**

Gaussian process (GP)

A collection of random variables such that any subset of them forms a multidimensional Gaussian random vector

$$f(\boldsymbol{X}_{1:n}) \sim \mathcal{N}\left(\boldsymbol{\mu}_{n \times 1}, \boldsymbol{\Sigma}_{n \times n}\right)$$

 $oldsymbol{\mu} = egin{bmatrix} \mu\left(oldsymbol{x}_1
ight)\ dots\ \mu\left(oldsymbol{x}_n
ight) \end{bmatrix}$

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma(\boldsymbol{x}_1, \boldsymbol{x}_1) & \cdots & \sigma(\boldsymbol{x}_1, \boldsymbol{x}_n) \\ \vdots & \ddots & \vdots \\ \sigma(\boldsymbol{x}_n, \boldsymbol{x}_1) & \cdots & \sigma(\boldsymbol{x}_n, \boldsymbol{x}_n) \end{bmatrix}$$

Assuming all {s} are equal, final kernel value = 0.386

Expected Improvement (EI)

- Let f* be the minimum of all observed values so far
- How much can a new point **x**' improve:
 - If $f(x') > f^*$, Imp(x') = 0
 - Else, Imp(x') = f*-f(x')
- $EI(\mathbf{x}') = Expectation [max(f^*-f(\mathbf{x}'),0)]$

$$EI(\boldsymbol{x}) = (f^* - \mu)P\left(\frac{f^* - \mu}{\sigma}\right) + \sigma p\left(\frac{f^* - \mu}{\sigma}\right)$$

Standard normal cdf = P, pdf = p

Data loader and augmentation considerations

npz is faster, data loaders are more versatile

CNN Results

Complexity Penalty = Training time / epoch

We are not penalizing this, but it's correlated

Performancecomplexity tradeoff

17

Conv 37

MaxPool

Conv 67

MaxPool

Softmax

10

CIFAR-10 w/ aug

W _c	0	0.01	0.1	1	10
Initial learning rate η	0.001	0.001	0.001	0.003	0.001
Weight decay λ	3.3 x 10 ⁻⁵	8.3 x 10 ⁻⁵	1.2 x 10 ⁻⁵	0	0
Batch size	120	256	459	452	256

 λ strictly correlated with N_p

MLP Results

Pink dots: *Complexity Penalty =* Training time / epoch

Black crosses: *Complexity Penalty =* # Trainable Params

Reuters RCV1 on GPU

- X

×

 W_{c}

Deep-n-Cheap

https://github.com/souryadey/deep-n-cheap/blob/master/README.md

How to run?

- Install Python 3
- Install Pytorch
- \$ pip install sobol_seq tqdm
- \$ git clone https://github.com/souryadey/deep-n-cheap.git
- \$ cd deep-n-cheap
- \$ python main.py

For help:

\$ python main.py -h

Datasets (including custom)

Set dataset to either:

- --dataset=torchvision.datasets.<dataset> . Currently supported values of <dataset> = MNIST, FashionMNIST, CIFAR10, CIFAR100
- --dataset='<dataset>.npz', where <dataset> is a .npz file with 4 keys:
 - xtr : numpy array of shape (num_train_samples, num_features...), example (50000,3,32,32) or (60000,784). Image data should be in *channels_first* format.
 - ytr : numpy array of shape (num_train_samples,)
 - xte : numpy array of shape (num_test_samples, num_features...)
 - yte : numpy array of shape (num_test_samples,)
- Some datasets can be downloaded from the links in dataset_links.txt. Alternatively, define your own custom datasets.

Comparison (CNNs on CIFAR-10)

Fromowork	Additional	Search cost	Best model found from search			
Framework	settings	(GPU hrs)	Architecture	$t_{ m tr}~(m sec)$	Batch size	Best val acc $(\%)$
Proxyless NAS	Proxyless-G	96	537 conv layers	429	64	93.22
Auto-Keras	Default run	14.33	Resnet-20 v2	33	32	74.89
AutoGluon	Default run	3	Resnet-20 v1	37	64	88.6
	Extended run	101	Resnet-56 v1	46	64	91.22
Auto-Pytorch	'tiny cs'	6.17	30 conv layers	39	64	87.81
	'full cs'	6.13	41 conv layers	31	106	86.37
Deep-n-Cheap	$w_c = 0$	29.17	14 conv layers	10	120	93.74
	$w_c = 0.1$	19.23	8 conv layers	4	459	91.89
	$w_c = 10$	16.23	4 conv layers	3	256	83.82

Penalize inference complexity, <u>not</u> training

Auto Keras and Gluon don't support getting final model out, so we compared on best val <- acc found during search instead of final test acc

22

Comparison (MLPs)

Framowork	Additional	Search cost	Best model found from search				
Tamework	settings	(GPU hrs)	MLP layers	N_p	$t_{ m tr}~(m sec)$	Batch size	Best val acc (%)
Fashion MNIST							
Auto-Pytorch	'tiny cs'	6.76	50	27.8M	19.2	125	91
	'medium cs'	5.53	20	3.5M	8.3	184	90.52
	'full cs'	6.63	12	122k	5.4	173	90.61
Deep-n-Cheap	$w_c = 0$	0.52	3	263k	0.4	272	90.24
(penalize $t_{\rm tr}$)	$w_c = 10$	0.3	1	7.9 k	0.1	511	84.39
Deep-n-Cheap	$w_c = 0$	0.44	2	317k	0.5	153	90.53
(penalize N_p)	$w_c = 10$	0.4	1	7.9 k	0.2	256	86.06
Reuters RCV1							
Auto-Pytorch	'tiny cs'	7.22	38	19.7M	39.6	125	88.91
	'medium cs'	6.47	11	11.2M	22.3	337	90.77
Deep-n-Cheap	$w_c = 0$	1.83	2	1.32M	0.7	503	91.36
(penalize $t_{\rm tr}$)	$w_c = 1$	1.25	1	100k	0.4	512	90.34
Deep-n-Cheap	$w_c = 0$	2.22	2	1.6M	0.6	512	91.36
(penalize N_p)	$w_c = 1$	1.85	1	100k	5.54	33	90.4

23

Takeaway

We may not need very deep networks!

Investigations and Insights

Search transfer

Can a NN architecture found after stages 1 and 2 on dataset A be applied to dataset B after running Stage 3 training hyperparameter search?

How does it compare to native search on dataset B?

Can architectures generalize?

Search transfer results

Transferring from CIFAR outperforms native FMNIST (probably due to more params)

Training times mostly the same

Choosing initial points in Bayesian optimization

Random sampling

Sobol sampling Like grid search Better for more dimensions

BO vs random and grid search (30 points each)

Purely random search: 30 prior Purely grid search (Sobol): 30 prior

Balanced BO: 15 prior + 15 steps Extreme BO: 1 prior + 29 steps 31

Ensembling

Multiple models vote on final test samples

Slight increases in performance at the cost of large increases in complexity

University of Southern California

Thank you!!

Future work:

- Extension to RNNs
- Extension to more hyperparameters, e.g. kernel sizes for large images
- Tensorflow support

