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Overview



Architecture
Hyperparameters

Training
Hyperparameters

Motivation

• Deep neural networks have a lot of hyperparameters
• How many layers?
• How many neurons?
• Learning rate
• Batch size
• and more…

• Our understanding of NNs is at best vague, at worst, zero!
• NNs take a lot of time to train. Time = Money!
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AutoML (Automated Machine Learning)

• Software frameworks that play the role of the designer
• Given a problem, search for NN models
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Jin 2019 – Auto-Keras AWsLabs 2020 – AutoGluon

Mendoza 2018 – Auto-PyTorch



Our Work
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ttr = Training time / epoch
Np = # Trainable parameters

Reduce training complexity

Target custom datasets 
and user requirements 

Supports CNNs and MLPs



Approach



wc

Search Objective
Optimize performance and complexity

Modified loss function: f( NN Config x ) = log( fp + wc*fc )

Good performance
Slow to train

Slow search process

Quick to train
Sacrifice performance

wc is like 
regularization
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fp = 1 - (Best Validation Accuracy)
fc = Normalized ttr or Np

= ttr(config) / ttr(baseline)

Example config x:
[#layers, #channels] = [3, (29,40,77)]



Three-stage search process
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Core architecture hyps
CNNs:
• num conv layers
• num channels

MLPs:
• num hidden layers
• num nodes

Advanced arch. hyps
CNNs:

1) Downsampling style
2) Batch normalization
3) Dropout
4) Shortcuts

MLPs:
1) Dropout

Training hyps
• Learning rate
• Weight decay
• Batch size

Searched using 
Bayesian 

optimization

Stage 1: Core 
Architecture Search

Stage 2: Advanced 
Architecture Search Final results

Stage 3: Training 
Hyperparameter Search

Multiple grid 
searches in 
sequence

Fixed to 
presets

Fixed to Stage 
1 search results

Fixed to Stage 
2 search results

Fixed to 
presets

Fixed to 
presets

Stage 1 
search 
results

Stage 2 
search 
results

Stage 3 
search 
results

Fixed to Stage 
1 search results

Searched using 
Bayesian 

optimization



Examples 
of Stage 2
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Bayesian Optimization Workflow
• Sample some initial data X1:n1 and find f(X1:n1)
• Form prior to approximate f. This is a Gaussian process with μn1x1, Σn1xn1

• Repeat for n2 steps:
• Sample new points X’1:n3

• Find expected improvement EI(x’) for each new point and choose xn1+1 = argmax EI(x’)
• Form posterior to approximate f :

• Augment X1:n1 to X1:n1+1

• Find f(xn+1)
• Augment μn1x1 to μ(n1+1)x1 , Σn1xn1 to Σ(n1+1)x(n1+1)

• Finally, return best f and corresponding best x
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Total configs explored: n1 + n2*n3
Total configs trained: n1 + n2



Gaussian process (GP)

A collection of random variables such 
that any subset of them forms a multi-
dimensional Gaussian random vector
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Covariance kernel –
Similarity between 
NN configs
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Kernel = 0.682
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Expected Improvement (EI)

• Let f* be the minimum of all observed values so far
• How much can a new point x’ improve:

• If f(x’) > f*, Imp(x’) = 0
• Else, Imp(x’) = f*-f(x’)

• EI(x’) = Expectation [ max(f*-f(x’),0) ]
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Standard normal cdf = P, pdf = p



Results



Data loader and augmentation considerations
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Using data pre-loaded from npz format
Entire dataset is in memory

data = np.load(‘mnist.npz’)
xtr, ytr = data[‘xtr’], data[‘ytr’]
for i in numbatches:

inputs = xtr[i*batch_size : (i+1)*batch_size]
labels = ytr[i*batch_size : (i+1)*batch_size]

Using Pytorch data loaders
Uses generators to not burden memory

data = torchvision.datasets.MNIST(root = data_folder, train = True, download = False, transform = transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(data['train'], batch_size = batch_size, shuffle = True, num_workers = 4, 

pin_memory = True)
for batch in train_loader:

inputs, labels = batch

npz is faster, data loaders are more versatile
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CNN Results

Performance-
complexity
tradeoff

Complexity Penalty =
Training time / epoch

We are not penalizing 
this, but it’s correlated
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wc

Input at top, 
output at bottom

wc 0 0.01 0.1 1 10

Initial learning rate η 0.001 0.001 0.001 0.003 0.001

Weight decay λ 3.3 x 10-5 8.3 x 10-5 1.2 x 10-5 0 0

Batch size 120 256 459 452 256

λ strictly correlated with Np
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Pink dots:
Complexity Penalty =
Training time / epoch

Black crosses:
Complexity Penalty =
# Trainable Params

MLP Results



Deep-n-Cheap



https://github.com/souryadey/deep-n-cheap/blob/master/README.md
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https://github.com/souryadey/deep-n-cheap/blob/master/README.md


Comparison (CNNs on CIFAR-10)
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Auto Keras and Gluon don’t support getting 
final model out, so we compared on best val
acc found during search instead of final test acc

Penalize inference 
complexity, not training



Comparison (MLPs)
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Takeaway
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We may not need 
very deep networks!



Investigations
and Insights



Search transfer

Can a NN architecture found after stages 1 and 2 on 
dataset A be applied to dataset B after running 

Stage 3 training hyperparameter search?

How does it compare to native search on dataset B?

Stage 1 
and 2 on 
dataset B

Stage 3 on 
dataset B

Stage 1 
and 2 on 
dataset A

Stage 3 on 
dataset B

Search
Transfer

Final
Config

Final
Config}

Compare

Native

Sourya Dey University of Southern California 26

Can architectures generalize?



Search 
transfer 
results

Transferring from 
CIFAR outperforms 
native FMNIST 
(probably due to 
more params)

Training times 
mostly the same



Stage 2 x1 x2 x3

x11 x12 x13 x21 x22 x23 x31 x32 x33Stage 3

Stage 1 x1 x2 x3

Greedy

What about a non-greedy search?
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Justifying our greed
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Choosing initial points in Bayesian optimization
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Random sampling Sobol sampling
Like grid search

Better for more dimensions
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BO vs random and grid search (30 points each)
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Purely random search: 30 prior

Purely grid search (Sobol): 30 prior
Balanced BO: 15 prior + 15 steps

Extreme BO: 1 prior + 29 steps



Ensembling
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Multiple models vote on final test samples

Slight increases in performance at the cost of large increases in complexity
Sourya Dey University of Southern California



Thank you!!

Future work:
• Extension to RNNs
• Extension to more hyperparameters, e.g. kernel sizes for large images
• Tensorflow support


