
Deep-n-Cheap

Sourya Dey
USC HAL research group

Deep Learning guest lecture
April 6th, 2020

Github

arXiv

https://github.com/souryadey/deep-n-cheap
https://arxiv.org/abs/2004.00974

Outline

Overview

Architecture
Hyperparameters

Training
Hyperparameters

Motivation

• Deep neural networks have a lot of hyperparameters
• How many layers?
• How many neurons?
• Learning rate
• Batch size
• and more…

• Our understanding of NNs is at best vague, at worst, zero!
• NNs take a lot of time to train. Time = Money!

4Sourya Dey University of Southern California

AutoML (Automated Machine Learning)

• Software frameworks that play the role of the designer
• Given a problem, search for NN models

5

Jin 2019 – Auto-Keras AWsLabs 2020 – AutoGluon

Mendoza 2018 – Auto-PyTorch

Our Work

6

ttr = Training time / epoch
Np = # Trainable parameters

Reduce training complexity

Target custom datasets
and user requirements

Supports CNNs and MLPs

Approach

wc

Search Objective
Optimize performance and complexity

Modified loss function: f(NN Config x) = log(fp + wc*fc)

Good performance
Slow to train

Slow search process

Quick to train
Sacrifice performance

wc is like
regularization

Sourya Dey University of Southern California 8

fp = 1 - (Best Validation Accuracy)
fc = Normalized ttr or Np

= ttr(config) / ttr(baseline)

Example config x:
[#layers, #channels] = [3, (29,40,77)]

Three-stage search process

9

Core architecture hyps
CNNs:
• num conv layers
• num channels

MLPs:
• num hidden layers
• num nodes

Advanced arch. hyps
CNNs:

1) Downsampling style
2) Batch normalization
3) Dropout
4) Shortcuts

MLPs:
1) Dropout

Training hyps
• Learning rate
• Weight decay
• Batch size

Searched using
Bayesian

optimization

Stage 1: Core
Architecture Search

Stage 2: Advanced
Architecture Search Final results

Stage 3: Training
Hyperparameter Search

Multiple grid
searches in
sequence

Fixed to
presets

Fixed to Stage
1 search results

Fixed to Stage
2 search results

Fixed to
presets

Fixed to
presets

Stage 1
search
results

Stage 2
search
results

Stage 3
search
results

Fixed to Stage
1 search results

Searched using
Bayesian

optimization

Examples
of Stage 2

10

Conv

Conv+BN

Conv

Conv+BN

Conv

Conv+BN

Conv

Conv+BN

Conv

Conv+BN

Conv

Conv+BN

Input

Softmax

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Input

Softmax

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Input

Softmax

BN = 0.5 Full shortcuts (left)
Half shortcuts (right)

Bayesian Optimization Workflow
• Sample some initial data X1:n1 and find f(X1:n1)
• Form prior to approximate f. This is a Gaussian process with μn1x1, Σn1xn1

• Repeat for n2 steps:
• Sample new points X’1:n3

• Find expected improvement EI(x’) for each new point and choose xn1+1 = argmax EI(x’)
• Form posterior to approximate f :

• Augment X1:n1 to X1:n1+1

• Find f(xn+1)
• Augment μn1x1 to μ(n1+1)x1 , Σn1xn1 to Σ(n1+1)x(n1+1)

• Finally, return best f and corresponding best x

Sourya Dey University of Southern California 11

Total configs explored: n1 + n2*n3
Total configs trained: n1 + n2

Gaussian process (GP)

A collection of random variables such
that any subset of them forms a multi-
dimensional Gaussian random vector

Sourya Dey University of Southern California 12

µ =

2

64
µ (x1)

...
µ (xn)

3

75 ⌃ =

2

64
� (x1,x1) · · · � (x1,xn)

...
. . .

...
� (xn,x1) · · · � (xn,xn)

3

75

<latexit sha1_base64="hne20NSXKHP9jDxBk6NDdOYmVQU=">AAADa3iclVJdi9QwFE1bdcf6Neu+qQ/BYWUFGdpV0Bdh0RcfV3R2FybDkKRpJ2ySdpJ02aH0f+qr7/4FMe3Wj3YWwQshh3vPzTm5XFIIbmwUffX84MbNWzuj2+Gdu/fuPxjvPjwxeakpm9Fc5PqMYMMEV2xmuRXsrNAMSyLYKTl/39RPL5g2PFef7aZgC4kzxVNOsXWp5a63RkRWSJY1fAsRYRlXFZHYan5Zhy6NBEvtQcO5rJcx0jxb2ecQoRBdJLk1LRqwVMcKEVPJ78cgWq9LnPSvsBX/xDOJr9U3TaVv4cXQyzOIaGvFgX/w1bZ315D8An9+s/2G+k9NNdTsT2I5nkTTqA24DeIOTEAXx8vxN5TktJRMWSqwMfM4KuyiwtpyKpgbU2lYgek5ztjcQYUlM4uq3Y0a7rtMAtNcu6MsbLN/d1RYGrORxDGdv5UZ1prkdbV5adM3i4qrorRM0SuhtBTQ5rBZNJhwzagVGwcw1dx5hXSFNabWrWNPhcg6dEOJhyPYBieH0/jl9PDjq8nRu248I/AYPAUHIAavwRH4AI7BDFDvi/fD3/FH/vdgL3gUPLmi+l7Xswd6Eez/BCWfGfg=</latexit>

Covariance kernel –
Similarity between
NN configs

13

d (xik, xjk) = !k

✓
|xik � xjk|
uk � lk

◆rk

� (xik, xjk) = exp

✓
�d2(xik, xjk)

2

◆

� (xi,xj) =
KX

k=1

sk� (xik, xjk)
<latexit sha1_base64="8FdqLEFAjMSv3jjIgJg+KIubH/c=">AAADNXichVLLbhMxFPUMrxIeTWHJxiICtVITZUKlIqFKFWyQ2BSJtJXiZOTxeCbu2J6R7UGJ3PkZfoJfYAs7FmwQYssv4GSGKk2ReiXLx/eec4917ajgTJt+/7vn37h56/adjbute/cfPNxsbz061nmpCB2SnOfqNMKacibp0DDD6WmhKBYRpydR9mZRP/lIlWa5/GDmBR0LnEqWMIKNS4Vb3isU0ZRJizlLJY2rVow4Tcz2LLQsq3bddpZVSLF0anbg8wOIckFTHGawpqFEYWKX+LyWdFcl55Utw6zLw4seE6vcASLUQpqlAl/jRmdF49StreLJ4B8b1vSdyg5cw0a01hhFws6qkO024Gy1uS5FaLODoJrYd5XVYXbdlaoWojK+mFXY7vR7/WXAqyBoQAc0cRS2f6I4J6Wg0hCOtR4F/cKMLVaGEU5d91LTApMMp3TkoMSC6rFdvnIFn7lMDJNcuSUNXGZXFRYLrecickyBzVSv1xbJ/9VGpUleji2TRWmoJLVRUnJocrj4MjBmihLD5w5gopi7KyRT7B7DuI91ySUSVcsNJVgfwVVwPOgFL3qD93udw9fNeDbAE/AUbIMA7IND8BYcgSEg3ifvi/fV++Z/9n/4v/zfNdX3Gs1jcCn8P38Ba5sNDQ==</latexit>

50 channels

80 channels

36 channels

61 channels

107 channels

Min channels = 16
Max channels = 64
omega = 3, r = 1

Min channels = 16
Max channels = 128
omega = 3, r = 1/2

Min channels = 16
Max channels = 256
omega = 3, r = 1/3

Distance = 0.875
Kernel = 0.682

Distance = 1.236
Kernel = 0.466

Distance = 3 (i.e. max)
Kernel = 0.01 (i.e. min)

Config i Config j

Assuming all {s} are equal, final kernel value = 0.386

Pre-decided Computed

No 3rd layer

La
ye

r 1
La

ye
r 2

La
ye

r 3
Individual
Distance

Individual
Kernel

Complete
Kernel

Convex
combination

Expected Improvement (EI)

• Let f* be the minimum of all observed values so far
• How much can a new point x’ improve:

• If f(x’) > f*, Imp(x’) = 0
• Else, Imp(x’) = f*-f(x’)

• EI(x’) = Expectation [max(f*-f(x’),0)]

Sourya Dey University of Southern California 14

Standard normal cdf = P, pdf = p

Results

Data loader and augmentation considerations

Sourya Dey University of Southern California 16

Using data pre-loaded from npz format
Entire dataset is in memory

data = np.load(‘mnist.npz’)
xtr, ytr = data[‘xtr’], data[‘ytr’]
for i in numbatches:

inputs = xtr[i*batch_size : (i+1)*batch_size]
labels = ytr[i*batch_size : (i+1)*batch_size]

Using Pytorch data loaders
Uses generators to not burden memory

data = torchvision.datasets.MNIST(root = data_folder, train = True, download = False, transform = transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(data['train'], batch_size = batch_size, shuffle = True, num_workers = 4,

pin_memory = True)
for batch in train_loader:

inputs, labels = batch

npz is faster, data loaders are more versatile

17

CNN Results

Performance-
complexity
tradeoff

Complexity Penalty =
Training time / epoch

We are not penalizing
this, but it’s correlated

Conv 50
BatchNorm

Conv 52
BatchNorm
Dropout 0.3

Conv 53
BatchNorm

Conv 59, /2
BatchNorm
Dropout 0.3

Conv 95
BatchNorm

Conv 96
BatchNorm
Dropout 0.3

Conv 97
BatchNorm

Conv 120
MaxPool

BatchNorm
Dropout 0.3

Conv 193
BatchNorm

Conv 239
MaxPool

BatchNorm
Dropout 0.3

Conv 351
BatchNorm

Conv 385
BatchNorm
Dropout 0.3

Conv 488
BatchNorm

Conv 496
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

Conv 39

Conv 60
MaxPool

BatchNorm

Conv 120
BatchNorm

Conv 124

BatchNorm
Dropout 0.3

Conv 178

Conv 192
MaxPool

BatchNorm

Conv 292
BatchNorm

Conv 328
BatchNorm
Dropout 0.3

Conv 352

Conv 396
BatchNorm

Conv 488
BatchNorm

Conv 488
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

MaxPool

Conv 46

Conv 51

BatchNorm
Dropout 0.3

Conv 70

Conv 114
BatchNorm
Dropout 0.3

Conv 128, /2
BatchNorm

Conv 208

BatchNorm
Dropout 0.3

Conv 286
BatchNorm

Conv 371
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

MaxPool

BatchNorm

BatchNorm

MaxPool

Conv 116

BatchNorm
Dropout 0.15

MaxPool

Conv 61
MaxPool

Conv 358

Dropout 0.15
BatchNorm

Conv 216

BatchNorm
Dropout 0.15

MaxPool

G. A. Pool
Softmax

Conv 67

Dropout 0.15
MaxPool

Conv 37
MaxPool

Conv 130

G. A. Pool
Softmax

Conv 170
Dropout 0.15

CIFAR-10 w/ aug

0
0.01

0.1
1

10

wc

Input at top,
output at bottom

wc 0 0.01 0.1 1 10

Initial learning rate η 0.001 0.001 0.001 0.003 0.001

Weight decay λ 3.3 x 10-5 8.3 x 10-5 1.2 x 10-5 0 0

Batch size 120 256 459 452 256

λ strictly correlated with Np

19

Pink dots:
Complexity Penalty =
Training time / epoch

Black crosses:
Complexity Penalty =
Trainable Params

MLP Results

Deep-n-Cheap

https://github.com/souryadey/deep-n-cheap/blob/master/README.md

Sourya Dey University of Southern California 21

https://github.com/souryadey/deep-n-cheap/blob/master/README.md

Comparison (CNNs on CIFAR-10)

22

Auto Keras and Gluon don’t support getting
final model out, so we compared on best val
acc found during search instead of final test acc

Penalize inference
complexity, not training

Comparison (MLPs)

23

Takeaway

Sourya Dey University of Southern California 24

We may not need
very deep networks!

Investigations
and Insights

Search transfer

Can a NN architecture found after stages 1 and 2 on
dataset A be applied to dataset B after running

Stage 3 training hyperparameter search?

How does it compare to native search on dataset B?

Stage 1
and 2 on
dataset B

Stage 3 on
dataset B

Stage 1
and 2 on
dataset A

Stage 3 on
dataset B

Search
Transfer

Final
Config

Final
Config}

Compare

Native

Sourya Dey University of Southern California 26

Can architectures generalize?

Search
transfer
results

Transferring from
CIFAR outperforms
native FMNIST
(probably due to
more params)

Training times
mostly the same

Stage 2 x1 x2 x3

x11 x12 x13 x21 x22 x23 x31 x32 x33Stage 3

Stage 1 x1 x2 x3

Greedy

What about a non-greedy search?

28Sourya Dey University of Southern California

Justifying our greed

29Sourya Dey University of Southern California

Choosing initial points in Bayesian optimization

30

Random sampling Sobol sampling
Like grid search

Better for more dimensions
Sourya Dey University of Southern California

BO vs random and grid search (30 points each)

31

Purely random search: 30 prior

Purely grid search (Sobol): 30 prior
Balanced BO: 15 prior + 15 steps

Extreme BO: 1 prior + 29 steps

Ensembling

32

Multiple models vote on final test samples

Slight increases in performance at the cost of large increases in complexity
Sourya Dey University of Southern California

Thank you!!

Future work:
• Extension to RNNs
• Extension to more hyperparameters, e.g. kernel sizes for large images
• Tensorflow support

