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SOLD for $2.4 Million

Seal deal before transfer 
window closes!



Money Talks
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 The January I moved from 
Birmingham to Blackburn, I 
sat there by the phone for 13 
days, worrying, waiting for it 
to go through - I lost a stone.

“

”
--    Robbie Savage 

Former Premier League Midfielder 
Football Focus Special, 2011

Negotiations are a big part of football. 
What is the optimum price for a player?



Data Source: FIFA 2017
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A football simulation video game with official licenses 
for most major teams and players in the world 



FIFA 2017 in-game image

Player Attributes
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Authenticity of Data
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Season Ticket 
Holders

Managers

Feedback from 
9000 data 
reviewers

Scouts

300 data 
points per 

player

Stats updated weekly 
on EA servers as per 

real-life performance 



Criticisms of Data Authenticity

u Subjectivity by EA 

u Not enough data on fledgling players 

u Imperfect formula
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 If Messi were playing in the Irish 
league, his attributes would drop 
simply because he's not on the 
highest level anymore.

“

”
--    Michael Mueller-Moehring 

EA Sports Producer and Ratings Specialist 
Interview with ESPN FC, September 2016



Gathering Data – sofifa.com
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http://sofifa.com/players/top


Prices
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Heavy Prices

Rounded Min 
Price = $43K Rounded Max 

Price = $37M

Most Common 
Price = $1.1M

Rounded and 
Categorized

Occur as quantized values 
except for a few outliers
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Network Structure

u 119 output price values (categories) 

u 41 input features 
u 37 on a scale of 0–99 

u Age on a range of 16-43 

u 3 on a scale of 1-5 stars 

u Normalized to  𝜇 = 0, 𝜎 = 1
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Data Splits
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Training: 71% 
10914 samples

Validation: 13% 
1926 samples

Test: 16% 
2500 samples

Total: 

15340 players



Network Experiments

u Activation functions 

u Number and size of hidden layers 

u Learning rate and its decay 

u Regularization (L2) 

u Nesterov Momentum 

u Early stopping to prevent overfitting
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Activation Functions
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ReLU for all hidden layers and softmax 
for output layer works best



Size of 1st Hidden Layer
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No real trend. Max accuracy for 3900 neurons. 
I picked 2000 neurons for final model after optimizing other parameters.
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Size of subsequent hidden layers
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X = Number of neurons in 3rd hidden layer
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Network config = [41,2000,X,119] 
Picked X = 1500

Network config = [41,2000,1500,X,119] 
Picked X = 500

Final network configuration = [41,2000,1500,500,119]



Learning rate decay (Annealing)
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Nesterov Momentum
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L2 Regularization
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Early Stopping

Prevent overfitting by stopping training when validation accuracy doesn’t 
improve over some threshold number of epochs
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Picked threshold 
= 10 epochs



Final Training Conditions

u Network configuration = [41,2000,1500,500,119] 

u ReLU activation for all hidden layers, finally softmax output 

u L2 Regularization Coefficient = 0.0005 

u Learning rate = 0.01, annealing coefficient = 0.001 

u Nesterov momentum coefficient = 0.99 

u Minibatch size = 20
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Early stopping at 60 epochs



Accuracy Metrics
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Actual Predicted

PredictedActual

PredictedActual

(Top-1) Accuracy: Prediction 
exactly matches actual price

Top-3 Accuracy

Top-5 Accuracy

40.32%

71.28%

87.2%



Average Percentage Error (APE) in Price
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𝐴𝑃𝐸 = Avg𝐴𝑙𝑙 𝑇𝑒𝑠𝑡 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑟𝑖𝑐𝑒 − 𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑟𝑖𝑐𝑒

𝑇𝑟𝑢𝑒 𝑝𝑟𝑖𝑐𝑒
× 100

APE = 6.32%



Potential Improvements

u Star outliers hard to predict 

u Goalkeeping stats not considered 

u Training beyond ~60 epochs doesn’t improve 
u Vanishing gradients: Use different eta for each layer
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Lionel Messi: $96 Million

Manuel Neuer: $75 Million



Additional Details

u Accompanying report 
u More explanations 

u References 

u Code Available on Github 

u Tools Used 
u Python 2.7 

u Theano 

u Keras
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https://github.com/souryadey/footballer-price.git


Ending Quote

 If you have the money and you 
find the one player who can make 
you win and make the difference, 
no matter how expensive he is, 
you should do it. But there are 
not many players in the world 
who will make a real difference.
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“

”
--    Arsene Wenger 

Manager, Arsenal Football Club 
Interview with The Times, 2009


