
(3)	Merits	and	Analysis	of	Pre-defined	Sparsity

Sourya	Dey,	Keith	Chugg, Peter	Beerel

Hardware	Acceleration	of	Neural
Networks	via	Pre-defined	Sparsity

Contact:	souryade@usc.edu,	chugg@usc.edu,	pabeerel@usc.edu

(1)	Introduction
Neural networks (NNs) are critical drivers of new
machine learning technologies. Modern NNs are
gigantic with millions of parameters, leading to
large memory and computational complexity
during training. This is particularly true for the fully
connected (FC) classification layers (CLs) occurring
near the outputs of a typical NN. E.g. >95% of
connections in AlexNet are in the FC layers.

>95%
Existing methods to reduce parameters:
Ø Dropout
Ø Hashing
Ø Pruning
Ø Regularization

Additional	training	
processing	required
Need	to	store	complete
network	at	some	time

(2)	Our	Approach:	Pre-defined	Sparsity

Plan sparse CL connection
pattern from beginning
by designing pseudo-
random adjacency matrix

Input	fan-
out	=	1

Output	
fan-in	=	2

Overall	density	of	this	
network	=	8/32	=	25%

Classification layer (CL) connection density of a network can be reduced to low values using pre-defined
sparse connection patterns, without any performance degradation. This leads to tremendous parameter
(memory) savings, and in several cases, considerable operational (computational) savings as well. For
example, the following networks achieve the same accuracy as their fully connected CL counterparts [3]:

Net Junction	
fan-outs

CL	Junction	
densities	(%)

Overall	CL	
density	(%)

CIFAR10
conv2

1,	1 0.2,	6.3 0.22
1,	8 0.2,	50 0.39

CIFAR100	
conv2

1,	1 0.2,	0.8 0.21
1,	8 0.2,	6.3 0.38
1,	32 0.2,	25 0.95

CIFAR10	
conv3

1,	1,	1 0.2,	0.4, 6.3 0.22
1,	1,	8 0.2,	0.4,	50 0.3
1,	2,	16 0.2,	0.8,	100 0.41

CIFAR100	
conv3

1,	1,	1 0.2,	0.4,	0.8 0.22
1,	1,	16 0.2,	0.4,	13 0.39
1,	2,	32 0.2,	0.8,	25 0.59

MNIST	
conv2

1,	5 0.1,	50 0.29
4,	10 0.5,	100 0.83
16,	10 2,	100 2.35

MNIST	CL	
only

42,	10 38,	100 38.3
2,	10 1.8,	100 3.02

Net CLs	/	Total	
Layers

Conv	
Params (M)

Conv	
Ops (B)

FC	CL	
Params (M)	

Sparse	CL	
Params (M)

Overall	Param
%	Reduction

Overall	Op	
%	Reduction

MNIST	CL	only 2/2 0 0 0.07 0.03 61.7 61.7
MNIST	conv2 2/6 0.05 0.1 2.47 0.06 95.63 18.29
CIFAR10	conv2 2/17 1.15 0.15 2.11 0.005 64.63 1.35
CIFAR100	conv2 2/17 1.15 0.15 2.16 0.03 64.76 1.38
CIFAR10	conv3 3/18 1.15 0.15 2.23 0.009 65.83 1.43
CIFAR100	conv3 3/18 1.15 0.15 2.26 0.013 65.99 1.45

Effects of pre-defined sparsity on accuracy of networks training on CIFAR (left top), and MNIST (left middle). Key: ‘conv2’, ‘conv3’ =
‘Convolutional network followed by 2 or 3 CLs’. ‘CL only’ = ’Only 3 CLs.
Tables showing some configurations we tried and their overall densities (right top), and savings achieved due to pre-defined sparsity (bottom).

8	input	neurons

4 output
neurons

Ø CNN with 2 CLs: 0.22% density (CIFAR10)
Ø CNN with 3 CLs: 0.59% density (CIFAR100)
Ø CNN with 2 CLs: 2.35% density (MNIST)
Ø Only 3 CLs (no conv layers): 38.3% density (MNIST)

Less relative importance of CLs
èMore sparsity possible

(4)	Memory	Organization
Define degree of parallelism z for each junction to trade-off hardware
complexity with processing timeè Flexible FPGA-suited architecture [1-2]

Mem	
0

Mem	
1

Mem	
z-1

p0 p1 p2 pz-1
pz
p2z
p3z
p4z p5z-1

Ø Any parameter set p (weights, activations, deltas
etc) is arranged in a bank of zmemories.

Ø Adjacency matrix distributes weights across a
junction in a pre-defined pseudo-random order.

Ø A bank of memories can be read in natural order
(same row for all), or permuted order (any row).

Ø Must read only 1 entry from each memory in 1
clock cycle, otherwise clash => Processing stall.

Prevent clashes through proper adjacency matrix design

(5)	Hardware	Acceleration	- Parallelism	and	Pipelining

Ad
ja
ce
nc
y	
M
at
rix

z weights	read	in	natural	
order	each	cycle

z activations	read	
in	permuted	

order	each	cycle

Ø 3 network processes - Feedforward
(FF), Backpropagate (BP), Update (UP)

Ø Parallel execution in a junction by
reusing weight memory (figure below)

Ø Pipelined execution of different inputs
across junctions (figure right)

Speedup = 3J, where J = No. of CL junctions

(6)	Our	Existing	Work
[1] S. Dey, Y. Shao, K. M. Chugg, and P. A. Beerel, “Accelerating training of deep neural networks via sparse edge processing,” in Proc. ICANN. Springer, 2017, pp. 273–280.
[2] S. Dey, P. A. Beerel, and K. M. Chugg, “Interleaver design for deep neural networks,” in Proc. Asilomar Conference on Signals, Systems and Computers. 2017.
[3] S. Dey, K.-W. Huang, P. A. Beerel, and K. M. Chugg, “Characterizing sparse connectivity patterns in neural networks,” in arXiv:1711.02131. 2017. Submitted for publication in ICLR 2018.


