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(1) Introduction (3) Merits and Analysis of Pre-defined Sparsity

Neural networks (NNs) are critical drivers of new Classification layer (CL) connection density of a network can be reduced to low values using pre-defined
machine learning technologies. Modern NNs are sparse connection patterns, without any performance degradation. This leads to tremendous parameter
gigantic with millions of parameters, leading to (memory) savings, and in several cases, considerable operational (computational) savings as well. For

large memory and computational complexity example, the following networks achieve the same accuracy as their fully connected CL counterparts [3]:
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(2) Our Approach: Pre-defined Sparsity
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Plan sparse CL connection Effects of pre-defined sparsity on accuracy of networks training on CIFAR (left top), and MNIST (left middle). Key: ‘conv2’, ‘conv3’ =

agttern jrom eqginnin ‘Convolutional network followed by 2 or 3 CLs’. ‘CL only’ =’Only 3 CLs.
tt b | | k followed b | |
by designing ,DSEUdO- Tables showing some configurations we tried and their overall densities (right top), and savings achieved due to pre-defined sparsity (bottom).

random adjacency matrix

CLs / Total Conv Conv FC CL Sparse CL | Overall Param | Overall Op
Layers Params(l\/l) Ops (B) | Params (M) | Params (M) | % Reduction |% Reduction

AL MNIST CL only 0 0.07 0.03 61.7 61.7

8 input neurons

N Output MNIST conv2 2/6 0.05 0.1 2.47 0.06 95.63 18.29

1 00 00 O faniin = 2 CIFARIO conv2  2/17 1.15 0.15 2.11 0.005 64.63 135

4 output < 0 0 0 0 1 ] CIFAR100 conv2  2/17 1.15 0.15 2.16 0.03 64.76 1.38
neurons 01 0 0 0 0 Input fan- CIFAR10 conv3 3/18 1.15 0.15 2.23 0.009 65.83 1.43
0 0110 0]  out=1 CIFAR100 conv3  3/18 1.15 0.15 2.26 0.013 65.99 1.45

(4) Memory Organization (5) Hardware Acceleration - Parallelism and Pipelining

Define degree of parallelism z for each junction to trade-off hardware > 3 network processes - Feedforward n+L-1  n+L-2  n+2 n+1
complexity with processing time = Flexible FPGA-suited architecture [1-2] (FF), Backpropagate (BP), Update (UP) —> . —»
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