Hardware Acceleration of Neural
Networks via Pre-defined Sparsity

USC University of : :
Southern Cah%lorma Sourya Dey, Keith Chugg, Peter Beerel USC Viterbi

School of Engineering

(1) Introduction (3) Merits and Analysis of Pre-defined Sparsity

Neural networks (NNs) are critical drivers of new Classification layer (CL) connection density of a network can be reduced to low values using pre-defined
machine learning technologies. Modern NNs are sparse connection patterns, without any performance degradation. This leads to tremendous parameter
gigantic with millions of parameters, leading to (memory) savings, and in several cases, considerable operational (computational) savings as well. For

large memory and computational complexity example, the following networks achieve the same accuracy as their fully connected CL counterparts [3]:
during training. This is particularly true for the fully

connected (FC) classification layers (CLs) occurring » CNN with 2 CLs: 0.22% density (CIFAR10)
. 0 . . ' '
near the outputs of a typical NN. E.g. >95% of > CNN with 3 CLs: 0.59% density (CIFAR100) :cunCt'Otn dCLJlf:Ct'?;) dOver:II(CO/L)
connections in AlexNet are in the FC layers. . . an-outs | GENSILIES (7o) | AENSITY {70
Y > CNN with 2 CLs: 2.35% density (MNIST) — 02 63 07
» Only 3 CLs (no conv layers): 38.3% density (MNIST) conv2 ¢ Uy S0 sk
1,1 0.2, 0.8 0.21
CIFAR100
(a) CIFAR10 conv2 (b) CIFAR10 conv3 (c) CIFAR10 conva3 (left), conv2 (right) conv? 1,8 0.2,6.3 0.38
:\;90 90 | 7] g 86.6 86.6 85.6 851 86.4 86.6 86.4 1, 32 0.2, 25 0.95
N | e eI 1,1,1 0.2,04,6.3 0.22
s § CIFARLO 1,1, 8 0.2, 0.4, 50 0.3
S 3. conv3
>95% E-’O' EE‘I’Q 1008\/;&4]1'202;2%00[122/ 1002; I:)C39/ ozz/ 1, 2, 16 02, 08, 100 0.41
Existing methods to reduce parameters: o e srases ses Tt e qearige 1 0204,08 0.22
3 2 o3 L1116 0.2,0.4, 13 0.39
> D N s .. g E
ropout Additional training . I 1,2,32 0.2, 0.8, 25 0.59
: : : : 1,5 0.1, 50 0.29
» Hashing processing required Q 1B O osox s oz | 1omé ook 03 0ix MNIST
E _ o 0'59;0 el 0:22%(: .525 Ovel:aIICor'mect.ion Over.all Cor_mect'ion 4, 10 0.5, 100 0-83
> Pruning Need to store complete L R R I I T B 5 100 5 35
. (d) CIFAR100 conv2 (e) CIFAR100 conv3 (f) CIFAR100 conv3 (left), conv2 (right) ’ ’ |
- network at some time 47 1] 383
> RegUIarlzathn — MNIST 2 b) MNIST 2 MNIST CL onl MNISTCL 19 36,199 .
@) conv conv) only only 2,10 1.8, 100 3.02

99

99.3 99.33 99.23 99.06

| A, " X 98
. | Y A] s _ > 97
o | ' 3% Less relative importance of CLs
| . < [[
. 5 7 5o =» More sparsity possible
: —— 100% —— 083% | = S 93

©
—— 2.35% —— 0.29% mEpl 100% 2.35% 0.83% 0.29% > 92

5 10 15 20 25 30 MEpS Overall Connection 916710 20 30 40 50 60 70 80 90 100

Epochs W Ep30 Density - Z junctions Connection Density (%)

7k

Co)
O
w

(e} O
0 O (
(o) —

(%)

(2) Our Approach: Pre-defined Sparsity

) 0 0
N oo X o ¥
o L W

co
~

lidation Accuracy (%)

Overall density of this
network = 8/32 = 25%

o
()]
un

Validation Accuracy
8 O

©
o
w

Plan sparse CL connection Effects of pre-defined sparsity on accuracy of networks training on CIFAR (left top), and MNIST (left middle). Key: ‘conv2’, ‘conv3’ =

agttern jrom eqginnin ‘Convolutional network followed by 2 or 3 CLs’. ‘CL only’ =’Only 3 CLs.
tt b | | k followed b | |
by designing ,DSEUdO- Tables showing some configurations we tried and their overall densities (right top), and savings achieved due to pre-defined sparsity (bottom).

random adjacency matrix

CLs / Total Conv Conv FC CL Sparse CL | Overall Param | Overall Op
Layers Params(l\/l) Ops (B) | Params (M) | Params (M) | % Reduction |% Reduction

AL MNIST CL only 0 0.07 0.03 61.7 61.7

8 input neurons

N Output MNIST conv2 2/6 0.05 0.1 2.47 0.06 95.63 18.29

1 00 00 O faniin = 2 CIFARIO conv2 2/17 1.15 0.15 2.11 0.005 64.63 135

4 output < 0 0 0 0 1] CIFAR100 conv2 2/17 1.15 0.15 2.16 0.03 64.76 1.38
neurons 01 0 0 0 0 Input fan- CIFAR10 conv3 3/18 1.15 0.15 2.23 0.009 65.83 1.43
0 0110 0] out=1 CIFAR100 conv3 3/18 1.15 0.15 2.26 0.013 65.99 1.45

(4) Memory Organization (5) Hardware Acceleration - Parallelism and Pipelining

Define degree of parallelism z for each junction to trade-off hardware > 3 network processes - Feedforward n+L-1 n+L-2 n+2 n+1
complexity with processing time = Flexible FPGA-suited architecture [1-2] (FF), Backpropagate (BP), Update (UP) —> . —»
> Parallel execution in a junction by

> Any parameter set p (weights, activations, deltas n (L-2) n-

reusing weight memory (figure below)
etc.) s arranged |.n a I?an.k of z memorles. Q< 5 2.}« > Pipelined execution of different inputs
(qV)
> Adjac.enc.y matrix d.lstrlbutes weights across a Sy — across junctions (figure right)
junction in a pre-defined pseudo-random order. -
. . ———®
> A bank of memories can be read in natural order | = . ; .
, O . Speedup = 3J, where J = No. of CL junctions (L 1) n-(L-2) n- 2 n-1
(same row for all), or permuted order (any row). , O .
> Must read only 1 entry from each memory in 1 Q< = ——@ Layer k Layer k+
clock cycle, otherwise clash => Processing stall. L—%* Y i I Bt =
% - — - (FF) Unit
Mem | Mem Mem | | ol | | S)
0 1 ;1 z weights read in natural activation mem. queue’ _ activation mem. queue
order each cycle) - J L Back-Propagation) .
I S N - = [@] (57
p _% w
0 o g | I { weight memory T {ak+1} \ |
27 z activations rjad ' a-dot memory queue | | R
04, In permute (| |
Py, Ps, 4 order each cycle : {45_}' l‘_ — ,
))) By HE= = (UP) Unit {0k} | B
Prevent clashes through proper adjacency matrix design | i ey e ' elta memory pair

(6) Our Existing Work

. Dey, Y. Shao, K. M. Chugg, and P. A. Beerel, “Accelerating training of deep neural networks via sparse edge processing,” in Proc. ICANN. Springer, 2017, pp. 273-280.
. Dey, P. A. Beerel, and K. M. Chugg, “Interleaver design for deep neural networks,” in Proc. Asilomar Conference on Signals, Systems and Computers. 2017.

. Dey, K.-W. Huang, P. A. Beerel, and K. M. Chugg, “Characterizing sparse connectivity patterns in neural networks,” in arXiv:1711.02131. 2017. Submitted for publication in ICLR 2018.

Contact: souryade@usc.edu, chugg@usc.edu, pabeerel@usc.edu

