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Overview of Current DNNs

u Key machine learning technologies
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u Training done offline in CPU/GPU 

u Custom hardware used for inference only

u Lot of parameters - Memory intensive 

u Slow to train - Computationally intensive
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Highlights of our Research

u Predefined sparsity - Memory friendly 
u 30x less parameters in FC layers
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u Edge-based processing - Computationally flexible 
u Hardware optimizations - Fast training 

u 35x estimated speedup over GPUs

u FPGA based architecture - Online training and inference

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with 
deep convolutional neural networks. In: NIPS-2012, pp. 1097–1105 (2012)
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Typical Supervised Network
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Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional 
neural networks. In: NIPS-2012, pp. 1097–1105 (2012) 
Zhang, C., Wu, D., Sun, J., Sun, G., Luo, G., Cong, J.: Energy-efficient CNN implementation 
on a deeply pipelined FPGA cluster. In: ISLPED-2016. pp. 326– 331. ACM, New York (2016)  
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Focus of the Present Work
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Sparsity
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Fully connected (FC) network
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Sparsity
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Fully connected (FC) network
Fanout (fo) = 4
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Sparsity
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Fanout (fo) = 4 Fanin (fi) = 8
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Sparsity

 6

Fully connected (FC) network
Fanout (fo) = 4
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Sparsity
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Fully connected (FC) network Sparse network 
fo = 1, fi = 2 
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Sparsity – PredefinedSparsity
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Fully connected (FC) network Sparse network 
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Does predefined sparsity work?
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3% connectivity gives >95% MNIST 
accuracy, within 3% of FC
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Does predefined sparsity work?
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3% connectivity gives >95% MNIST 
accuracy, within 3% of FC

Ongoing research shows:

u Results can be further 
improved by planning 
connections

u Trend holds for other 
datasets like CIFAR-10 
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Interleaving and Spread
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Interleaving and Spread

 8

0 
1 
2 
3 
4 
5 
6 
7

0 
1 
2 
3 
4 
5 
6 
7

Junction 1 Junction 2

☹ ☹



Sourya Dey, USC

Interleaving and Spread
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u Each output connected to a 
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Edge Processing

u Concurrent Network Processes 
u Feedforward (FF) - Weights and activations 

u Backpropagation (BP) - Weights, deltas and activation derivatives 

u Parameter Update (UP) - Weights, deltas and activations 

u Weights (edges) used in all processes 
u Single weight memory bank 

u Process z sets of parameters together
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z = Degree of parallelism
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Memory Organization

u z memories for all parameters 

u Read 1 entry from each memory at a time
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Order of Accesses

 11

Example: z=6

Natural order accesses 
for junction weights and 
next layer parameters

Permuted order 
accesses for previous 

layer parameters

Interleaver must 
prevent clashes
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Operational Parallelization in a Junction
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Pipelining across Junctions - Speedup
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Architecture Flexibility
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Hardware Complexity, 
Area and Power

Processing Time

z increases

Changing z makes architecture automatically 
adapts to problem size and available hardware. 
Suitable for FPGA reconfigurability
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Hardware Simulations
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fi=32

16 Output 
Neurons

z = 512 z = 32
Connectivity = 12.5% Connectivity = 50%

Overall connectivity = 13%

Verilog RTL on MNIST dataset
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RTL Fixed Point Results vs Floating Point
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3b integer + 
7b fractional

Fixed point − 
Floating point

Total 100K 
samples

Moving average of 
last 1000 samples
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Summary and Outstanding Issues

u Flexible hardware architecture for online training and inference 

u Predefined sparsity reduces memory and computational complexity 

u Speedup due to operational parallelization and junction pipelining 

u Extend to other types of neural networks 

u Memory bandwidth bottlenecks 

u Theoretical exploration of connectivity patterns
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Thank you!

Questions?

Contact: souryade@usc.edu


