Accelerating Training of DNNs via Sparse Edge Processing

Sourya Dey, Yinan Shao, Keith Chugg, Peter Beerel ICANN, September 2017

Overview of Current DNNs

Key machine learning technologies

- Lot of parameters Memory intensive
- Slow to train Computationally intensive
- Training done offline in CPU/GPU
- Custom hardware used for inference only

Highlights of our Research

- Predefined sparsity Memory friendly
 - ► 30x less parameters in FC layers
- Edge-based processing Computationally flexible
- Hardware optimizations Fast training
 - 35x estimated speedup over GPUs

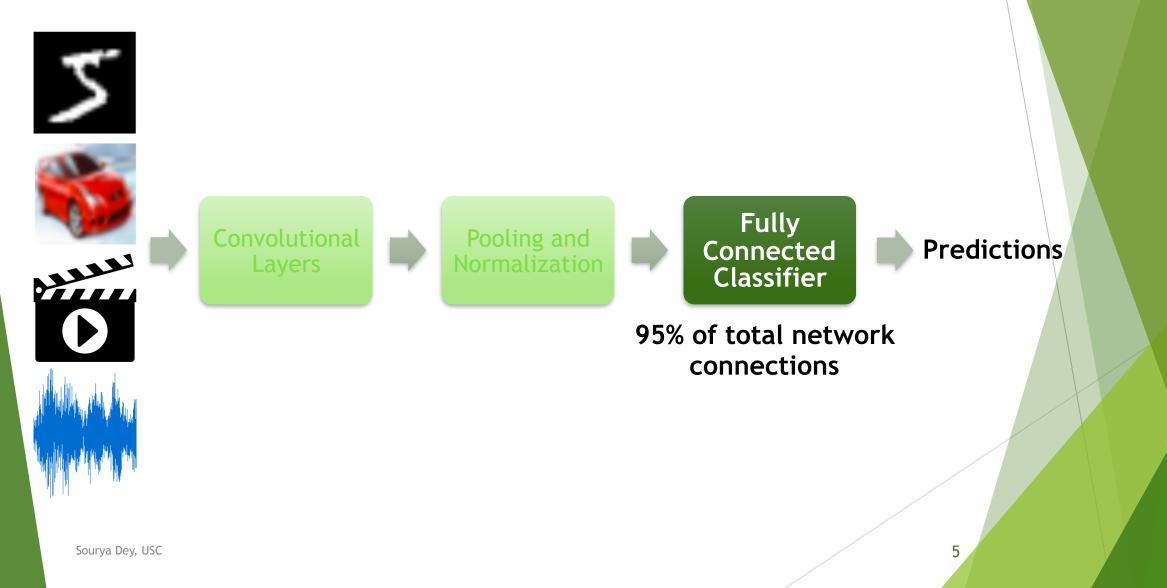
FPGA based architecture - Online training and inference

Sourya Dey, USC

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS-2012, pp. 1097-1105 (2012)

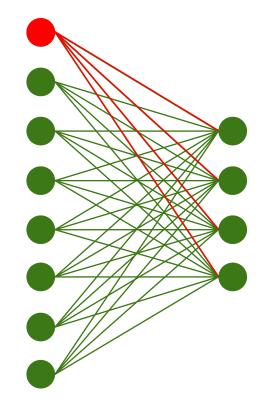
Typical Supervised Network Fully Pooling and Convolutional Predictions Connected Normalization Layers Classifier 95% of total network connections 5% of total network connections Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS-2012, pp. 1097-1105 (2012) Zhang, C., Wu, D., Sun, J., Sun, G., Luo, G., Cong, J.: Energy-efficient CNN implementation Sourya Dey, USC on a deeply pipelined FPGA cluster. In: ISLPED-2016. pp. 326-331. ACM, New York (2016)

Focus of the Present Work



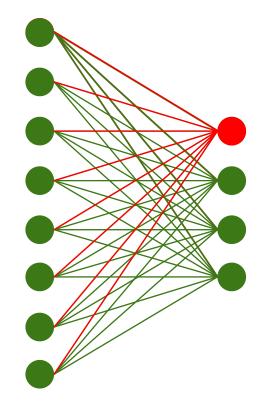


Fully connected (FC) network

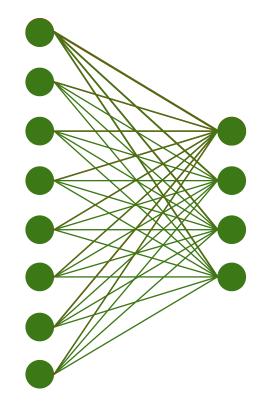


Fully connected (FC) network Fanout (*fo*) = 4

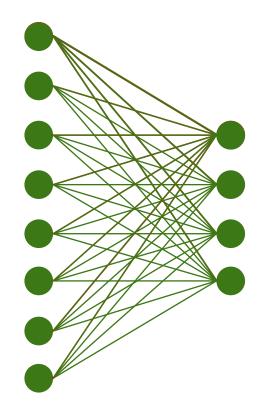
Sourya Dey, USC



Fully connected (FC) network Fanout (*fo*) = 4 Fanin (*fi*) = 8



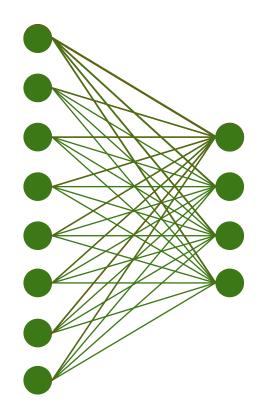
Fully connected (FC) network Fanout (*fo*) = 4 Fanin (*fi*) = 8 Connectivity = 100%



Fully connected (FC) network Fanout (*fo*) = 4 Fanin (*fi*) = 8 Connectivity = 100%

Sparse network fo = 1, fi = 2 Connectivity = 25%

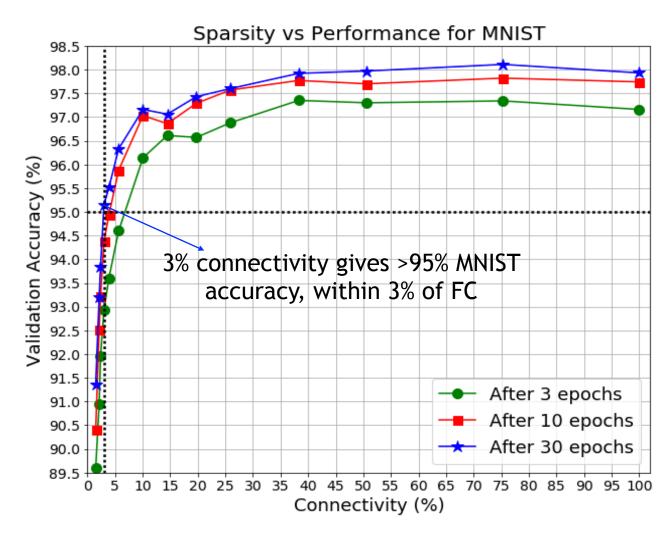
Sparsity - Predefined



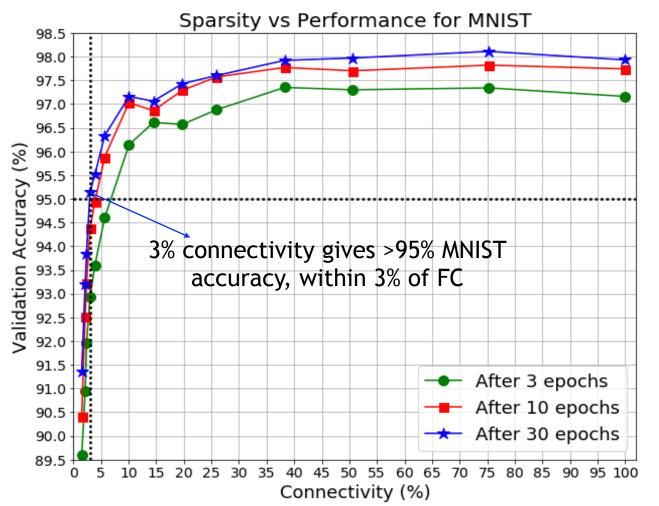
Fully connected (FC) network Fanout (*fo*) = 4 Fanin (*fi*) = 8 Connectivity = 100%

Sparse network fo = 1, fi = 2 Connectivity = 25%

Does predefined sparsity work?



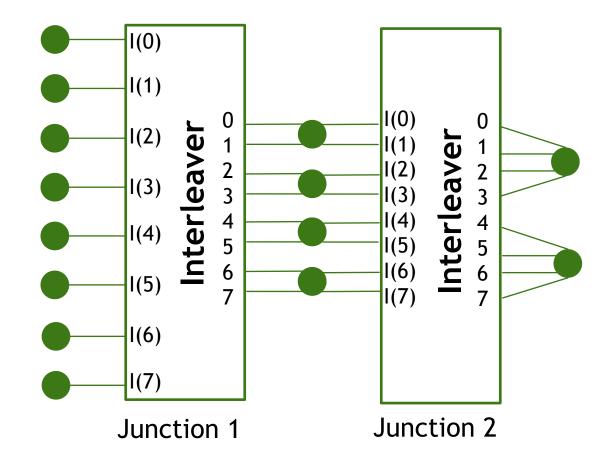
Does predefined sparsity work?



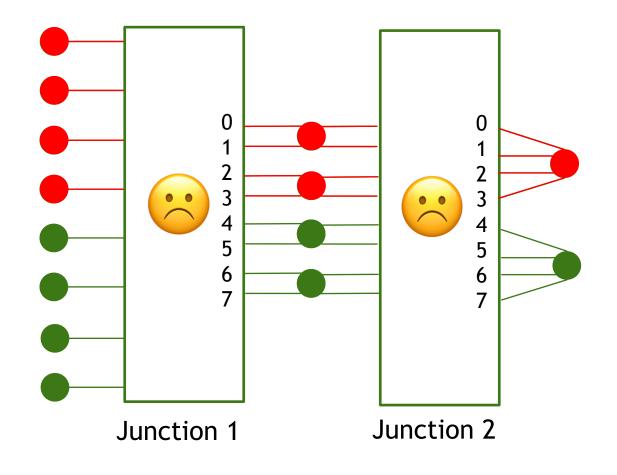
Ongoing research shows:

- Results can be further improved by planning connections
- Trend holds for other datasets like CIFAR-10

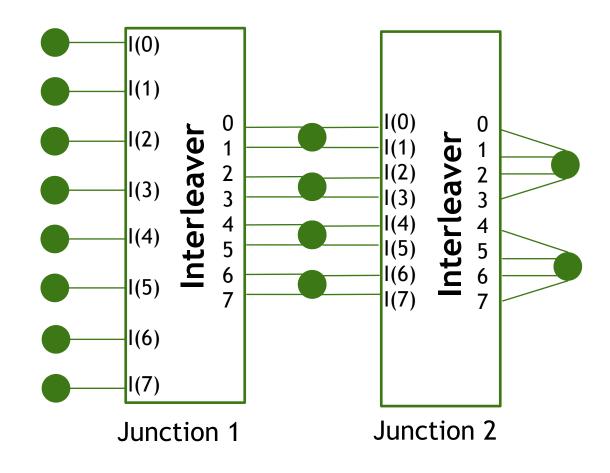
Interleaving and Spread



Interleaving and Spread



Interleaving and Spread



Interleaver algorithm ensures:

- Each output connected to a good chunk of different inputs
- No neuron unconnected

Edge Processing

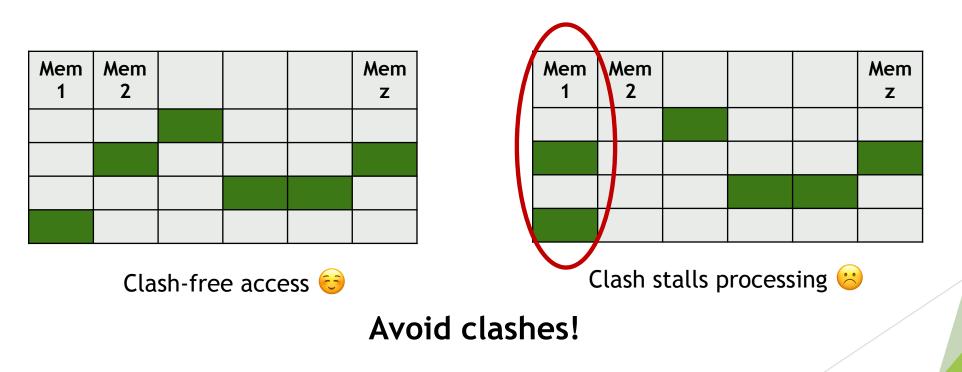
Concurrent Network Processes

- Feedforward (FF) Weights and activations
- Backpropagation (BP) Weights, deltas and activation derivatives
- Parameter Update (UP) Weights, deltas and activations
- Weights (edges) used in all processes
 - Single weight memory bank
- Process z sets of parameters together

z = Degree of parallelism

Memory Organization

- z memories for all parameters
- Read 1 entry from each memory at a time

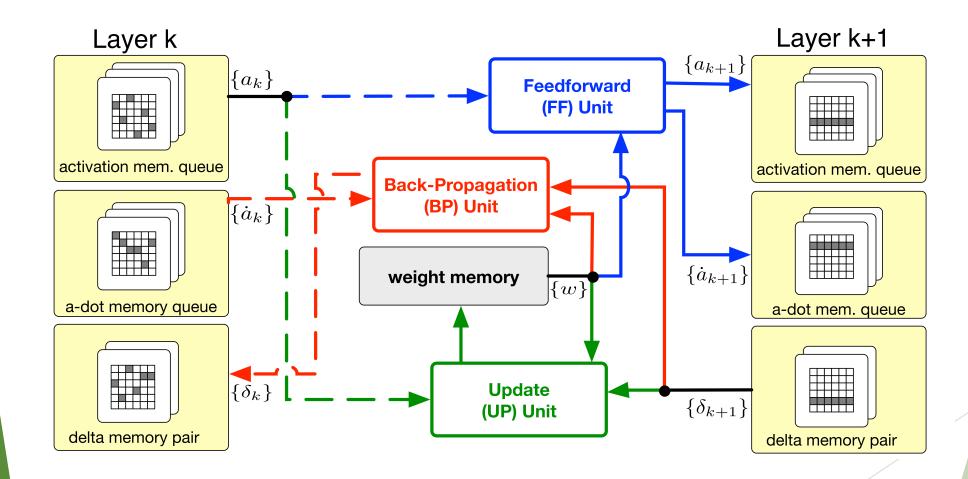


Order of Accesses

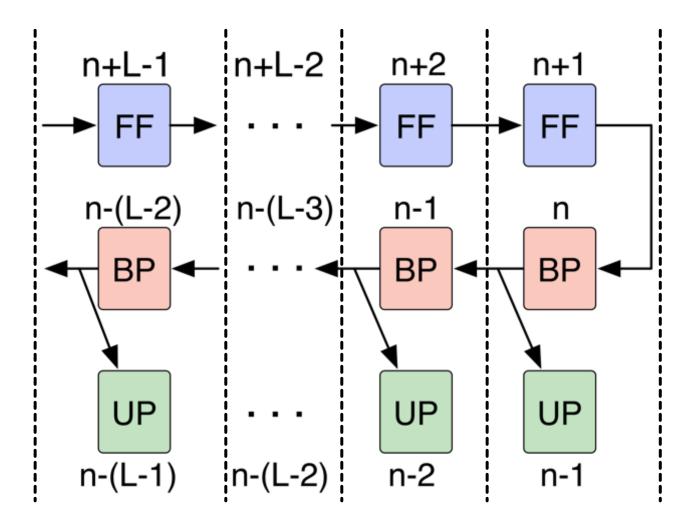


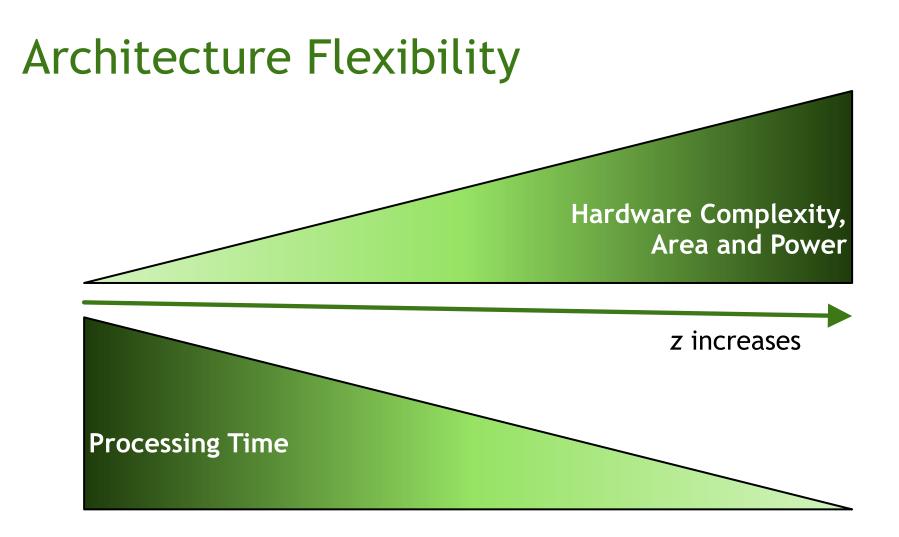
Sourya Dey, USC

Operational Parallelization in a Junction



Pipelining across Junctions - Speedup

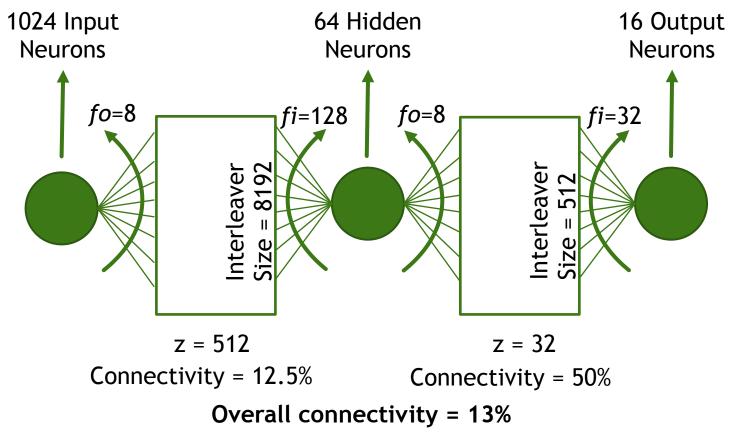




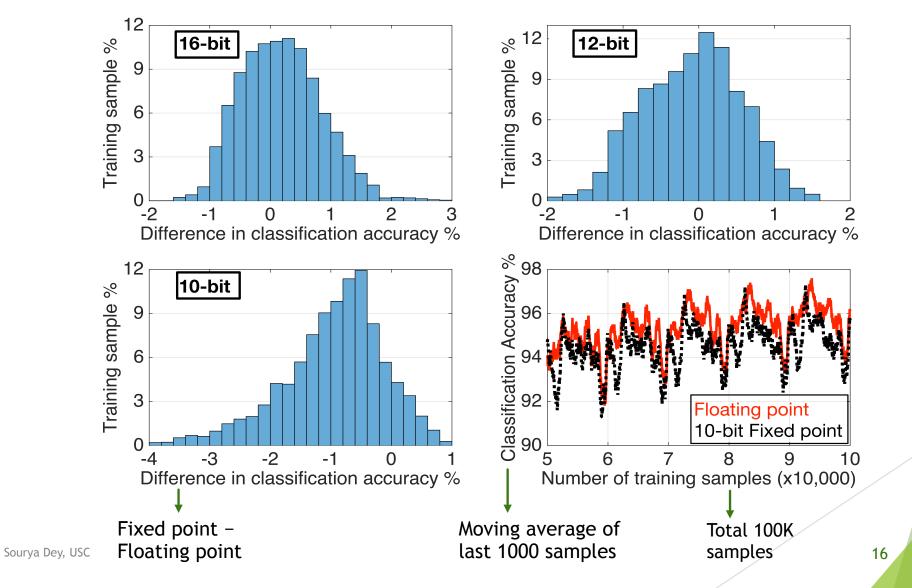
Changing z makes architecture automatically adapts to problem size and available hardware. Suitable for FPGA reconfigurability

Hardware Simulations

Verilog RTL on MNIST dataset



RTL Fixed Point Results vs Floating Point



Summary and Outstanding Issues

- Flexible hardware architecture for online training and inference
- Predefined sparsity reduces memory and computational complexity
- Speedup due to operational parallelization and junction pipelining

- Extend to other types of neural networks
- Memory bandwidth bottlenecks
- Theoretical exploration of connectivity patterns

Thank you!

Questions?

Contact: souryade@usc.edu