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Machine Learning and Neural Networks
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An algorithm to 
learn from data 
and classify it

Need a lot of 
data for good 
performance
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Issues with Natural Data

u Most data is naturally collected and labeled by humans 

u Labeling is time-consuming (e.g. Imagenet1) 

u Data can have missing features (e.g. Lung cancer dataset2)

 31: http://www.image-net.org/ 
2: http://archive.ics.uci.edu/ml/datasets/Lung+Cancer 

http://www.image-net.org/
http://archive.ics.uci.edu/ml/datasets/Lung+Cancer
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Synthetic data as a Solution

u Synthetic data generated and labeled using algorithms 

u Can be mass-produced cheaply without missing features 

u Algorithm can be tuned to: 
u Adjust difficulty 

u Get any distribution
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Overview of our Work

u Algorithm to generate Morse code classification datasets of 
varying difficulty 

u Metrics to evaluate difficulty of a dataset
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Morse code is a system of 
communication to encode 

characters as dots and dashes

+      . _ . _ .
64 character 

classes
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The Algorithm
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The Neural Network
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64 input neurons = 
Frame length of each 

Morse codeword

1024 hidden neurons

64 output neurons = 
Number of character 

classes
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Variations and Difficulty Scaling - 1
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Increasing ! of noise 
leads to confusion 

between dots, dashes 
and spaces
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Variations and Difficulty Scaling - 2
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Distribute remaining spaces randomly between leading and trailing



Sourya Dey, USC

Variations and Difficulty Scaling - 3, 4
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Dash length is 3-9, can be confused with dots and spaces

Dilate inputs by 4x

Property Before Dilation After Dilation

Frame length  
(= Number of inputs)

64 256

Space 1-3 4-12

Dot 1-3 4-12

Dash 3-9 12-36
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Classification Accuracy on Test Data
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Standard deviation " of added Gaussian noise
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Increasing Dataset Size
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Unlimited amounts of data can be easily 
generated using computer algorithms

~3M 
training 
samples

Overfitting 
region
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Dataset Evaluating Metrics
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Difficult datasets have increased probability of classification errors
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Difficult datasets have increased probability of classification errors
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Performance of the Metrics

Metric -#
L 0.59

U 0.64

D 0.63

T 0.64
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Harder datasets have lower accuracy and higher metric values
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Conclusion

u Algorithm to generate machine learning datasets of 
tunable difficulty 

u Synthetic data to solve challenges associated with 
natural data 

u Metrics to evaluate dataset difficulty prior to training
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Thank you!

Questions?

Contact: souryade@usc.edu


