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Machine Learning and Neural Networks

An algorithm to
learn from data
and classify it

Need a lot of
data for good
performance
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Issues with Natural Data

» Most data is naturally collected and labeled by humans
» Labeling is time-consuming (e.g. Imagenet")
» Data can have missing features (e.g. Lung cancer dataset?)
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Synthetic data as a Solution

» Synthetic data generated and labeled using algorithms
» Can be mass-produced cheaply without missing features

» Algorithm can be tuned to:
» Adjust difficulty
» Get any distribution
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Overview of our Work

» Algorithm to generate Morse code classification datasets of
varying difficulty

» Metrics to evaluate difficulty of a dataset

Morse code is a system of
communication to encode
characters as dots and dashes

-+

64 character
classes
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The Algorithm

Step 1:

Frame length: 64
Dot: 1-3
Dash: 4-9
Intermediate space: 1-3
Leading spaces: None
Trailing spaces: Remaining at end

;

Step 2:

Expected value range = [0,16]

Dot, dash = Normal(12,4/3)
Space=0

!

Step 3:

Additive Noise = Normal(0,0)
(For this case, 6=1)
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The Neural Network

64 input neurons =
Frame length of each
Morse codeword

64 output neurons =
Number of character
classes

1024 hidden neurons
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Variations and Difficulty Scaling - 1

I Dots and dashes [ Spaces I Confusion
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Variations and Difficulty Scaling - 2

Distribute remaining spaces randomly between leading and trailing

<+—— 64-wide input frame ——»

TR

X 1 3 3 2 38-X

Codeword Length = 26,
Leading spaces = X,
Trailing spaces = 38-x

OOOOO Input neurons
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Variations and Difficulty Scaling - 3, 4
Dash length is 3-9, can be confused with dots and spaces

Dilate inputs by 4x

Property Before Dilation |After Dilation

Frame length 64 256
(= Number of inputs)

Space 1-3 4-12
Dot 1-3 4-12
Dash 3-9 12-36
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Classification Accuracy on Test Data
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Increasing Dataset Size

Unlimited amounts of data can be easily
generated using computer algorithms
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Dataset Evaluating Metrics

Difficult datasets have increased probability of classification errors
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Dataset Evaluating Metrics

Difficult datasets have increased probability of classification errors
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Dataset Evaluating Metrics

Difficult datasets have increased probability of classification errors
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Dataset Evaluating Metrics

Difficult datasets have increased probability of classification errors
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Dataset Evaluating Metrics

Difficult datasets have increased probability of classification errors
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Performance of the Metrics

Harder datasets have lower accuracy and higher metric values
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Conclusion

» Algorithm to generate machine learning datasets of
tunable difficulty

» Synthetic data to solve challenges associated with
natural data

» Metrics to evaluate dataset difficulty prior to training
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Thank you!

Questions?

Sourya Dey, USC Contact: souryade®usc.edu



