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Pre-Defined Sparsity  
 

Reduce complexity of neural 
networks with minimal performance 

degradation
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Overview

Neural	networks	(NNs)	are	key	
machine	learning	technologies	

➢ Artificial	intelligence	
➢ Self-driving	cars	
➢ Speech	recognition	
➢ Face	ID	
➢ and	more	smart	stuff	…
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Weights	dominate	complexity	–	
they	are	all	used	in	all	3	operations
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Motivation behind our work

Training	can	take	weeks	on	CPU
Cloud	GPU	resources	are	expensive

Fully	connected	(FC)	Multilayer	Perceptron	(MLP)

Typical	
deep	
CNN

Modern	neural	networks	suffer	from	parameter	explosion
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Our Work:  
Pre-defined Sparsity

Pre-define	a	sparse	connection	
pattern	prior	to	training	
Use	this	sparse	network	for	both	
training	and	inference
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Our Work:  
Pre-defined Sparsity
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Our Work:  
Pre-defined Sparsity

Pre-define	a	sparse	connection	
pattern	prior	to	training	
Use	this	sparse	network	for	both	
training	and	inference

Overall	Density	
compared	to	FC
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for	every	node
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Our Work:  
Pre-defined Sparsity

Pre-define	a	sparse	connection	
pattern	prior	to	training	
Use	this	sparse	network	for	both	
training	and	inference

Overall	Density	
compared	to	FC

Structured	Constraints:	
Fixed	in-,	out-degrees	
for	every	node

Reduced	training	
and	inference	
complexity
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Motivation behind pre-defined sparsity

In	a	FC	network,	most	weights	are	very	small	in	magnitude	after	training
Sourya	Dey �8
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Pre-defined sparsity performance on MLPs

Sourya	Dey �9

Starting	with	only	20%	
of	parameters	reduces	
test	accuracy	by	just	1%
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Pre-defined sparsity performance on MLPs
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Starting	with	only	20%	
of	parameters	reduces	
test	accuracy	by	just	1%

MNIST	handwritten	digits

Reuters	news	articles

TIMIT	phonemes

CIFAR	images

Morse	symbols
S.	Dey,	K.	M.	Chugg	and	P.	A.	Beerel,	“Morse	Code	
Datasets	for	Machine	Learning,”	in	ICCCNT	2018.	
Won	Best	Paper	award.	
https://github.com/usc-hal/morse-dataset

https://github.com/usc-hal/morse-dataset


Analysis and 
Applications  

 
Deep dive into pre-defined sparsity 

for MLPs, and a corresponding 
application
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Designing pre-defined sparse networks

A	pre-defined	sparse	connection	
pattern	is	a	hyperparameter	to	be	

set	prior	to	training

Find	trends	and	guidelines	to	optimize	
pre-defined	sparse	patterns

Sourya	Dey �11

S.	Dey,	K.	Huang,	P.	A.	Beerel	and	K.	M.	Chugg,	"Pre-Defined	
Sparse	Neural	Networks	with	Hardware	Acceleration,"	
in	IEEE	Journal	on	Emerging	and	Selected	Topics	in	Circuits	
and	Systems,	vol.	9,	no.	2,	pp.	332-345,	June	2019.
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Individual junction densities

Latter	junctions	(closer	to	the	output)	need	to	be	denser
Sourya	Dey �12
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Individual 
junction 
densities

Each	curve	keeps	!2	fixed	and	
varies	!net	by	varying	!1	

For	the	same	!net	,	!2	>	!1	
improves	performance

Sourya	Dey �13

Mostly	similar	trends	observed	
for	deeper	networks
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High	redundancy

Low	
redundancy

Dataset redundancy
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High	redundancy

Low	
redundancy

Dataset redundancy

MNIST	with	
default	784	
features

MNIST	reduced	
to	200	features	
Wider	spread

Less	redundancy	=>	Less	
sparsification	possibleSourya	Dey �14
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Effect of 
redundancy 
on sparsity

Reducing	redundancy	leads	to	
increased	performance	
degradation	on	sparsification
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‘Large sparse’ vs ‘small dense’ networks

A	sparser	network	with	more	
hidden	nodes	will	outperform	
a	denser	network	with	less	
hidden	nodes,	when	both	have	
same	number	of	weights

Sourya	Dey �16
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‘Large sparse’ vs ‘small dense’ networks
Networks	with	same	number	of	parameters	go	from	bad	
to	good	as	#nodes	in	hidden	layers	is	increased

Sourya	Dey �17
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Regularization
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Regularized	cost

Original	unregularized	
cost	(like	cross-entropy)

Regularization	term
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Regularization
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Regularized	cost

Original	unregularized	
cost	(like	cross-entropy)

Regularization	term

Pre-defined	sparse	networks	need	
smaller	λ	(as	determined	by	validation)

Pre-defined	sparsity	reduces	the	
overfitting	problem	stemming	from	
over-parametrization	in	big	networks

Overall	Density λ

100	% 1.1	x	10-4

40	% 5.5	x	10-5

11	% 0

Example	for	MNIST	2-junction	networks



Slow	
Training

Hardware	
Intensivez

Flexibility

Degree	of	parallelism	(z)	=	Number	of	
weights	processed	in	parallel	in	a	junction

S.	Dey,	Y.	Shao,	K.	M.	Chugg	and	P.	A.	Beerel,	“Accelerating	training	of	deep	neural	networks	via	sparse	edge	processing,”	in	
26th	International	Conference	on	Artificial	Neural	Networks	(ICANN)	Part	1,	pp.	273-280.	Springer,	Sep	2017.

Application: A hardware architecture for 
on-device training and inference



Degree	of	parallelism	(z)	=	Number	of	
weights	processed	in	parallel	in	a	junction

Connections	designed	for	clash-free	
memory	accesses	to	prevent	stalling

S.	Dey,	P.	A.	Beerel	and	K.	M.	Chugg,	“Interleaver	design	for	deep	neural	networks,”	in	51st	Annual	
Asilomar	Conference	on	Signals,	Systems,	and	Computers	(ACSSC),	pp.	1979-1983,	Oct	2017.

z	=	3

Application: A hardware architecture for 
on-device training and inference



Degree	of	parallelism	(z)	=	Number	of	
weights	processed	in	parallel	in	a	junction

Connections	designed	for	clash-free	
memory	accesses	to	prevent	stalling

Prototype	implemented	on	FPGA

S.	Dey,	D.	Chen,	Z.	Li,	S.	Kundu,	K.	Huang,	K.	M.	Chugg	and	P.	A.	Beerel,	“A	Highly	Parallel	FPGA	Implementation	of	Sparse	Neural	Network	Training,”	in	2018	
International	Conference	on	Reconfigurable	Computing	and	FPGAs	(ReConFig),	pp.1-4,	Dec	2018.	Expanded	pre-print	version	available	at	arXiv:1806.01087.

Application: A hardware architecture for 
on-device training and inference



Model Search  
 

Automate the design of CNNs 
with good performance and 

low complexity
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Model search is ongoing 
research, hence currently 
not available publicly

Sourya	Dey �21



Thank you!

https://souryadey.github.io/

https://souryadey.github.io/

