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(1) Problem Statement

Neural networks need a lot of manual tuning
- Architecture, layers (discrete)
- Hyperparameter values (continuous)

Neural networks have massive complexity

Ref: GoogleNet, CVPR 2015
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Our research goal: Automate the search for low
complexity networks which give good performance
Optimization objective:

f = f,(Performance) + w_*f.(Complexity)

Current

focus:
CNNs

Quick to train Good performance
Bad performance Too long to train

Bayesian optimization can fail if search space is too big
Given a problem, divide search space into levels:

—_—

- # convolutional layers
# channels in each
Downsampling (strides/pooling)

Level 1:
Basic structure

Kernel sizes Level 2:
Batch normalization (yes/no) ~— Parameter
Grouped convolutions adjustments

# classification layers
Densities _ Level 3:

Weight decay coefficients Classifier

Learning rate R Level 4:
Learning rate decay ~  Training

Batch size _J hyperparameters

Our prior work on
pre-defined sparsity
S. Dey, K. Huang, P. A. Beerel and K. M. Chugg, "Pre-Defined

Sparse Neural Networks with Hardware Acceleration," in IEEE
JETCAS, vol. 9, no. 2, pp. 332-345, June 2019.

f,(Performance) = 1 - Best validation acc
f.(Complexity) = Normalized training time per epoch
Can set w, according to desired tradeoff
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(2) Approaches

Search space is both continuous and discrete
Each point x is a neural network to be trained

Evaluating f is expensive and noisy!

Potential approaches
- Simulated annealing

- Bayesian optimization l

- Evolutionary / genetic algorithms

Sample f(-) and model via a Gaussian process
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Get potential new networks via expected improvement
- Expensive f evaluations are minimized
- Kernel can model noise
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Batch normalize

v Learning rate = 4.3e-3, Decay = 0.999
Sx8 conv x 391 channels, Weight decay = 4e-4, Batch size = 501
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Global average pooling
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10-way softmax

Density = 71% Dataset used:

Learning rate = 4.4e-3, Decay = 0.992 CIFAR'1 0 images
Weight decay = 2.3e-3, Batch size =338 | Of size 32x32 X 3

Best val acc = 82% in 30 eps channels (no aug)

Best val acc = 74% in 30 eps
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