Exploring ComplexityReduction in Deep Learning

Sourya Dey, Peter Beerel, Keith Chugg

(1) Problem Statement

Neural networks need a lot of manual tuning

- Architecture, layers (discrete)
- Hyperparameter values (continuous)

Neural networks have *massive complexity*

Our research goal: Automate the search for low complexity networks which give good performance

Optimization objective:

 $f = f_p(Performance) + w_c * f_c(Complexity)$

Current focus:

Level 1:

Basic structure

Level 2:

Parameter

adjustments

Level 3:

Classifier

Level 4:

Quick to train
Bad performance

Good performance Too long to train

(2) Approaches

Search space is both continuous and discrete Each point x is a neural network to be trained *Evaluating f is expensive and noisy!*

Potential approaches

- Simulated annealing
- Bayesian optimization
- Evolutionary / genetic algorithms

Sample $f(\cdot)$ and model via a *Gaussian process*

$$f\left(oldsymbol{X}_{1:n}
ight) \sim \mathcal{N}\left(oldsymbol{\mu}_{n imes 1}, oldsymbol{\Sigma}_{n imes n}
ight) \quad oldsymbol{\Sigma} = egin{bmatrix} k(oldsymbol{x}_1, oldsymbol{x}_1) & \cdots & k(oldsymbol{x}_1, oldsymbol{x}_n) \ k(oldsymbol{x}_n, oldsymbol{x}_1) & \cdots & k(oldsymbol{x}_n, oldsymbol{x}_n) \end{bmatrix}$$

Get potential new networks via expected improvement

- Expensive f evaluations are minimized
- Kernel can model noise

$$EI(\boldsymbol{x}) = (f^* - \mu)P\left(\frac{f^* - \mu}{\sigma}\right) + \sigma p\left(\frac{f^* - \mu}{\sigma}\right)$$

 f^* = Current optimal value

(3) Research Methodology

Bayesian optimization can fail if search space is too big Given a problem, *divide search space into levels*:

Downsampling (strides/pooling)

- Kernel sizes

- Batch normalization (yes/no)

- Grouped convolutions

- # classification layers

- Densities

- Weight decay coefficients

Learning rate

Learning rate decay

Batch size

Training hyperparameters

Our prior work on pre-defined sparsity

S. Dey, K. Huang, P. A. Beerel and K. M. Chugg, "Pre-Defined Sparse Neural Networks with Hardware Acceleration," in *IEEE JETCAS*, vol. 9, no. 2, pp. 332-345, June 2019.

 f_p (Performance) = 1 - Best validation acc f_c (Complexity) = Normalized training time per epoch Can set w_c according to desired tradeoff

(4) Results so far

 $w_c = 0.1$ (Balanced case)

 $w_c = 1$ (More focus on low complexity)

Learning rate = 4.3e-3, Decay = 0.999 Weight decay = 4e-4, Batch size = 501

Best val acc = 74% in 30 eps

Learning rate = 4.4e-3, Decay = 0.992 Weight decay = 2.3e-3, Batch size = 338 Best val acc = 82% in 30 eps

10-way softmax

Density = 71%

Dataset used:
CIFAR-10 images
of size 32x32 x 3
channels (no aug)