
EXPLORING COMPLEXITY REDUCTION IN DEEP LEARNING

by

Sourya Dey

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the Requirements for the Degree
DOCTOR OF PHILOSOPHY

(ELECTRICAL ENGINEERING)

August 2020

Copyright 2020 Sourya Dey

Epigraph

Let yourself be silently drawn by the
strange pull of what you really love.

–Rumi

ii

Sourya Dey

Acknowledgements

Pursuing a Ph.D. is a beautiful thing since it allows one to be free to explore

uncharted territory instead of being burdened by constraints of banality. In this

regard, I would like to thank my co-advisors – Professors Peter Beerel and Keith

Chugg – without whose help and guidance I would not have been able to explore

the research directions that have led to the material in this dissertation.

I am grateful to past and present members of my research team who have helped

and collaborated with me in my research. Special thanks to my primary collabora-

tors – Kuan-Wen Huang, Yinan Shao, Diandian Chen, and Saikrishna Chaitanya

Kanala. I also acknowledge the contribution of secondary collaborators who have

since moved on – Zongyang Li, Saad Zafar, Mahdi Jelodari Mamaghani, Zheng Wu,

Jiajin Xi, Venkata Nishanth Narisetty, and Kiran Nagendra; and current research

team members whose constant feedback has been invaluable – Souvik Kundu, Prof.

Leana Golubchik, Marco Paolieri, Arnab Sanyal, and Andrew Schmidt. I am also

indebted to Prof. Panayiotis Georgiou, Prof. Mahdi Soltanolkotabi, Prof. Antonio

Ortega, and Mohammed Nasir for help in specific efforts.

iii

I would like to thank the agencies that have funded my research and helped to

pay the bills – National Science Foundation Software and Hardware Foundations

(NSF SHF) Grant 1763747, and Defense Threat Reduction Agency (DTRA) in

association with the Scalable Acceleration Platform Integrating Reconfigurable

Computing and Natural Language Processing Technologies (SAPIENT) team and

University of Southern California Information Sciences Institute (USC ISI). I am

grateful to Diane Demetras and Annie Yu for their help in administrative matters

related to the progress of my Ph.D. and presentation of my research to the outside

world.

Heartfelt thanks to my family members for their constant love and support,

despite being located halfway around the world. Nothing would have been possible

without them.

Finally, thanks to you the reader for picking up this dissertation detailing my

research efforts since spring 2016. I hope you have as much enjoyment reading it

as I had writing it.

Author’s note: This dissertation is being completed while the COVID-19 pan-

demic is gripping the world, and the US has been hit particularly hard. These are

interesting times we live in.

iv

Table of Contents

Epigraph ii

Acknowledgements iii

List of Tables viii

List of Figures ix

List of Acronyms xii

Abstract xiv

Related Publications and Software xvi

1 Introduction 1
1.1 Neural networks . 1

1.1.1 Complexity of neural networks 1
1.1.2 Automated Machine Learning 2

1.2 Dissertation Contributions . 3
1.2.1 Pre-defined sparsity . 3
1.2.2 Automated Machine Learning 5
1.2.3 Dataset Engineering . 6

1.3 Dissertation Organization . 6

2 Background 8
2.1 Mathematical Notation . 8
2.2 Notation and Basic Operations for Neural Networks 12

2.2.1 Feedforward (FF) . 16
2.2.2 Backpropagation (BP) . 18
2.2.3 Update (UP) . 19

2.3 Training and Inference . 21
2.4 Convolutional neural networks . 26
2.5 Recurrent neural networks . 29

v

3 Pre-Defined Sparsity 30
3.1 Related Work . 30
3.2 Structured Pre-defined sparsity . 32

3.2.1 Motivation and Preliminary Examples 36
3.2.2 Structured Constraints . 37
3.2.3 Modifications to Neural Network Operations 40

3.3 Performance Results, Trends and Guidelines 42
3.3.1 Datasets and Experimental Configuration 43
3.3.2 Dataset Redundancy . 48
3.3.3 Individual junction densities 52
3.3.4 ‘Large and sparse’ vs ‘small and dense’ networks 56

3.4 Summary . 60

4 Hardware Architecture 61
4.1 Junction pipelining and Operational parallelism 65
4.2 Memory organization . 68
4.3 Clash-freedom . 70
4.4 Batch size . 71
4.5 Architectural Constraints . 72
4.6 Special Case: Processing a FC junction 74
4.7 FPGA Implementation . 76

4.7.1 Network Configuration and Training Setup 77
4.7.2 Bit Width Considerations 79
4.7.3 Implementation Details . 85

4.8 Summary . 91

5 Connection Patterns 92
5.1 Biadjacency Matrices . 92
5.2 Clash-free memory access patterns 95

5.2.1 Types of memory access patterns 97
5.3 Comparison between classes of Pre-defined Sparsity 101
5.4 Comparison to other methods of sparsity 105
5.5 Metrics for Connection Patterns . 106

5.5.1 Window biadjacency matrices 107
5.5.2 Scatter . 111

5.6 Summary . 116

6 Dataset Engineering 117
6.1 Generating Algorithm . 120

6.1.1 Variations and Difficulty Scaling 123
6.2 Neural Network Results and Analysis 125

6.2.1 Results . 125

vi

6.2.2 Results for Pre-Defined Sparse Networks 129
6.3 Metrics for Dataset Difficulty . 131

6.3.1 Goodness of the Metrics . 135
6.3.2 Limitations of the Metrics 136

6.4 Summary . 137

7 Automated Machine Learning 139
7.1 Motivation and Related Work . 139
7.2 Overview of Deep-n-Cheap (DnC) 142
7.3 Our Approach . 145

7.3.1 Three-stage search process 146
7.3.2 Bayesian Optimization . 150

7.4 Experimental Results . 154
7.4.1 Datasets and loading . 155
7.4.2 Convolutional Neural Networks 156
7.4.3 Multilayer Perceptrons . 160

7.5 Comparison to related work . 163
7.6 Investigations and insights . 165

7.6.1 Search transfer . 165
7.6.2 Greedy strategy . 167
7.6.3 Bayesian optimization vs random and grid search 168
7.6.4 Ensembling . 169
7.6.5 Changing hyperparameters of Bayesian Optimization 170
7.6.6 Adaptation to various platforms 171

7.7 Summary . 172

8 Conclusion 173
8.1 Summary . 173
8.2 Final Word . 177

References 178

vii

List of Tables

4.1 Hardware Architecture Total Storage Cost Comparison for FC vs.
sparse cases. 67

4.2 Implemented Network Configuration 78
4.3 Effect of Bit Width on Performance 82

5.1 Comparison of Clash-free Left Memory Access Types and associated
Hardware Cost for a Single Junction 101

5.2 Comparison of Pre-Defined Sparse Classes 104

6.1 Correlation coefficients between metrics and accuracy 135

7.1 Comparison of Features of AutoML Frameworks 145
7.2 Comparing Frameworks on CNNs for CIFAR-10 augmented on GPU 164
7.3 Comparing AutoML Frameworks on MLPs for Fashion MNIST and

RCV1 on GPU . 165

viii

List of Figures

2.1 Complete training flow for a single input sample for a simple MLP. 15
2.2 Comparison of ReLU and sigmoid activations and their derivatives. 17
2.3 Flowchart showing the correct way to use data and set parameters and

hyperparameters. 22
2.4 Example of a simple CNN. 26
2.5 Example of shortcut connections in a CNN. 27
2.6 Example of a RNN. 29

3.1 Illustrating basic concepts of structured pre-defined sparsity. 35
3.2 Histograms of weight values in different junctions for fully connected

networks trained on MNIST, and preliminary examples of the per-
formance effects of pre-defined sparsity. 38

3.3 Comparison of classification accuracy for original and changed redun-
dancy datasets. 50

3.4 Comparing histograms of weight values for original and reduced
redundancy versions of MNIST, after training fully-connected net-
works. 51

3.5 Comparison of classification accuracy as a function of ρnet for dif-
ferent ρL, where L = 2. 53

3.6 Comparison of classification accuracy as a function of ρnet for ρ2 vs
ρ3 in three-junction MNIST networks, keeping ρ1 fixed. 54

3.7 Comparison of classification accuracy as a function of ρnet for datasets
with varying redundancy. 55

3.8 Comparing ‘large and sparse’ to ‘small and dense’ networks for
MNIST networks with different numbers of junctions. 57

3.9 Comparing ‘large and sparse’ to ‘small and dense’ networks for a
Reuters network. 58

3.10 Comparing ‘large and sparse’ to ‘small and dense’ networks for
TIMIT and CIFAR networks. 60

4.1 Overview of our hardware architecture. 62

ix

4.2 Architecture for parallel operations for an intermediate junction i
(i 6= 1, L) showing the three operations along with associated inputs
and outputs. 66

4.3 An example of hardware processing inside a sparse junction. 69
4.4 An example of hardware processing inside a fully connected junction. 75
4.5 Maximum absolute values (left y-axis) for all weights, biases, and

deltas in the network, and percentage classification accuracy (right
y-axis), as the network is trained. 80

4.6 Histograms of absolute value of s1 with respect to dynamic range for (a)
sparse vs. (b) fully connected cases, as obtained from software simula-
tions. Values right of the pink line are clipped. 83

4.7 Comparison of activation functions for a1, as obtained from software
simulations. 84

4.8 Performance for different ρ2, keeping ρ1 fixed at 6.25%, as obtained from
software simulations. 88

4.9 Our design working on the Xilinx XC7A100T-1CSG324C FPGA. 89
4.10 Breaking up each operation into 3 clock cycles. 90

5.1 Different connection patterns arising in a structured pre-defined
sparse network. 93

5.2 Repeating Fig. 4.3 for convenience. 97
5.3 Various types of clash-free left memory access patterns and memory

dithering. 99
5.4 An example of biadjacency matrices and equivalent junctions. . . . 107
5.5 Different types of windowing in left neurons. 108
5.6 Window biadjacency matrices and scatter. 110
5.7 Constructing window biadjacency matrices. 111
5.8 Performance vs.scatter. 114

6.1 Generating the Morse codeword • — • — • corresponding to the
+ symbol. 123

6.2 Classification performance for different variations of Morse datasets. 126
6.3 Effects of noise leading to spaces getting confused with dots and

dashes. 127
6.4 Effects of increasing the size of Morse 3.1 by a factor of x on test accuracy

after 30 epochs (blue), and (Training Accuracy − Test Accuracy) after
30 epochs (orange). 128

6.5 Effects of imposing pre-defined sparsity on classification performance for
different Morse datasets. 130

6.6 Validation performance results for varying ρ1 and ρ2 individually so
as to keep ρnet fixed at (a) 25%, (b) 50%. 131

x

6.7 Plotting each metric for dataset difficulty vs. percentage accuracy
obtained for different Morse datasets. 136

7.1 Deep-n-Cheap complete logo. 143
7.2 Three-stage search process for Deep-n-Cheap. 147
7.3 Examples of shortcut connections and batch normalization in stage

2 search space. 149
7.4 Calculating Stage 1 similarity for two convolutional channel config-

urations. 153
7.5 Deep-n-Cheap results for CNNs. 158
7.6 The best configurations found by Deep-n-Cheap for CIFAR-10 aug-

mented. 159
7.7 Deep-n-Cheap results for MLPs. 162
7.8 Process and results of search transfer. 166
7.9 Search objective values for multiple configurations through stages. . 168
7.10 Search objective values comparing Bayesian optimization to random

and grid search. 168
7.11 Results of ensembling. 170

8.1 Trends in AI papers on Scopus. 174
8.2 Trends in AI papers on arXiv. 175
8.3 Parameter explosion in deep neural networks over the years. 175

xi

List of Acronyms
AI Artificial Intelligence

ASIC Application Specific Integrated Circuit

ASR Automatic Speech Recognition

AutoML Automated Machine Learning

BN Batch Normalization

BO Bayesian Optimization

BRAM Block Random Access Memory

CI Confidence Interval

CNN Convolutional Neural Network

CPU Central Processing Unit

DnC Deep-n-Cheap

DSP Digital Signal Processing

FC Fully Connected

FLOPS Floating Point Operations per Second

FMNIST Fashion MNIST

FPGA Field Programmable Gate Array

gcd Greatest Common Divisor

GPU Graphics Processing Unit

LDPC Low Density Parity Check

LED Light Emitting Diode

LUT Look Up Table

MFCC Mel-frequency Cepstral Coefficient

MLP Multilayer Perceptron

NAS Neural Architecture Search

xii

NN Neural network

PCA Principal Component Analysis

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

RTL Register Transfer Level

SGD Stochastic Gradient Descent

TPC Test Prediction Comparison

UART Universal asynchronous receiver-transmitter

xiii

Abstract

Deep learning has become a powerful tool for cutting-edge machine learning and

artificial intelligence applications such as data classification and computer vision.

Deep learning uses neural networks comprising many trainable parameters, which

gives rise to significant computational complexity, particularly during their train-

ing phase. Such complexity is often prohibitively large given the available time,

financial and computational resources, and thereby restricts the study and usage

of deep learning systems.

This dissertation makes two major contributions towards reducing complexity

of neural networks in deep learning. Firstly, we propose pre-defined sparsity –

a technique to reduce computational complexity during both training and infer-

ence phases. We analyze the resulting sparse connection patterns in an attempt

to understand network performance, and introduce a proof-of-concept hardware

architecture leveraging sparsity to achieve on-device training and inference. Sec-

ondly, we introduce Deep-n-Cheap – an automated machine learning framework

targeted towards training complexity reduction. The framework is open-source

xiv

and applicable to a wide range of datasets and types of neural networks. As an

additional third contribution, we engineer a family of synthetic datasets of algo-

rithmically customizable difficulty for benchmarking neural networks and machine

learning methodologies.

xv

Related Publications and Software

Publications
Note that the citation counts in the URLs linked below may be inaccurate. Please
see the author’s Google Scholar page for a full list of citations.

S. Dey, K. W. Huang, P. A. Beerel and K. M. Chugg, “Pre-defined Sparse Neural
Networks with Hardware Acceleration,” in IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 9, no. 2, pp. 332–345, Jun 2019.
IEEE: https://ieeexplore.ieee.org/document/8689061

S. Dey, S. C. Kanala, K. M. Chugg and P. A. Beerel, “Deep-n-Cheap: An Auto-
mated Search Framework for Low Complexity Deep Learning,” under review at
European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML-PKDD), 2020.
arXiv pre-print: https://arxiv.org/abs/2004.00974

[Awarded Best Paper] S. Dey, K. M. Chugg and P. A. Beerel, “Morse Code
Datasets for Machine Learning,” in 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), pp. 1-7, Jul 2018.
IEEE: https://ieeexplore.ieee.org/document/8494011

S. Dey, Y. Shao, K. M. Chugg and P. A. Beerel, “Accelerating training of deep
neural networks via sparse edge processing,” in 26th International Conference on
Artificial Neural Networks (ICANN) Part 1, pp. 273–280, Springer, 2017.
Springer: https://link.springer.com/chapter/10.1007/978-3-319-68600-4_32

S. Dey, P. A. Beerel and K. M. Chugg, “Interleaver design for deep neural net-
works,” in 51st Annual Asilomar Conference on Signals, Systems, and Computers
(ACSSC), pp. 1979–1983, Oct 2017.
IEEE: https://ieeexplore.ieee.org/document/8335713

S. Dey, K. W. Huang, P. A. Beerel and K. M. Chugg, “Characterizing sparse

xvi

https://scholar.google.com/citations?user=vQw9oFcAAAAJ&hl=en&oi=ao
https://ieeexplore.ieee.org/document/8689061
https://arxiv.org/abs/2004.00974
https://ieeexplore.ieee.org/document/8494011
https://link.springer.com/chapter/10.1007/978-3-319-68600-4_32
https://ieeexplore.ieee.org/document/8335713

connectivity patterns in neural networks,” in 2018 Information Theory and Appli-
cations Workshop (ITA), pp. 1–8, Feb 2018.
IEEE: https://ieeexplore.ieee.org/document/8502950

S. Dey, D. Chen, Z. Li, S. Kundu, K. W. Huang, K. M. Chugg and P. A. Beerel,
“A Highly Parallel FPGA Implementation of Sparse Neural Network Training,” in
2018 International Conference on Reconfigurable Computing and FPGAs (ReCon-
Fig), pp. 1–4, Dec 2018. Expanded preprint version available on arXiv.
IEEE: https://ieeexplore.ieee.org/document/8641739

Software
Please see the author’s Github page for additional information.

https://github.com/souryadey/deep-n-cheap
Deep-n-Cheap: AutoML framework balancing performance and complexity
v1.0 released on April 2, 2020

https://github.com/souryadey/predefinedsparse-nnets
Pre-defined sparse neural networks

https://github.com/souryadey/morse-dataset
Morse code datasets for training artificial neural networks

xvii

https://ieeexplore.ieee.org/document/8502950
https://arxiv.org/abs/1806.01087
https://ieeexplore.ieee.org/document/8641739
https://github.com/souryadey
https://github.com/souryadey/deep-n-cheap
https://github.com/souryadey/predefinedsparse-nnets
https://github.com/souryadey/morse-dataset

Chapter 1

Introduction

1.1 Neural networks

Neural networks (NNs) have proven to be ubiquitous in modern machine learning

and Artificial Intelligence (AI) applications such as object classification [1], self-

driving cars [2], Automatic Speech Recognition (ASR) [3], and so on. Such NNs are

usually deep, implying that there are hidden layers between the input (such as a

picture of a cat), and the output (such as a probability distribution indicating what

animal the picture is). The depth of a NN can vary from just one or two hidden

layers, as is common for Multilayer Perceptrons (MLPs) [4], to several hundred for

Convolutional Neural Networks (CNNs) [5].

1.1.1 Complexity of neural networks

NNs used for classification typically rely on large amounts of labeled data to train

– a process during which the numerical values of its internal parameters are tuned

to facilitate better inference – measured as classification performance on unseen

data. As more data have become available, the size and complexity of NNs have

1

grown sharply, with modern NNs containing millions [1] or even billions of train-

able parameters [6]. These massive NNs come with the cost of large computa-

tional and storage demands. The current state of the art is to train large NNs

on Graphics Processing Units (GPUs) in the cloud – a process that can take days

to weeks even on powerful GPUs [1,6,7] or similar programmable processors with

multiply-accumulate accelerators [8]. This translates to a large financial impact

when deploying NNs, cf. [9–11]. Therefore, several prominent researchers [12]

have identified complexity reduction as a key step to NN acceleration, which is

a general term referring to speeding up the deployment and operation of a NN.

Acceleration is generally performed post-training to reduce complexity of inference

only, e.g. methods for quantization, compression, and grouping parameters [13–16].

However, the training complexity of NNs remains a major bottleneck.

1.1.2 Automated Machine Learning

There are a number of choices which play a crucial role during the deployment

of NNs to solve specific problem(s). Some of these are the number of layers, the

structure of the layers, how fast the network should learn, and so on. These

form the domain of Automated Machine Learning (AutoML). Unfortunately, the

design of NNs is a largely empirical process and there is no clear understanding

regarding, for example, how many layers and neurons are appropriate for classifying

a picture of a handwritten digit into one out of ten classes. Existing efforts in

2

AutoML can broadly be classified into two categories – a) AutoML frameworks

such as [17–19] that are generalized software packages to design NNs, and b) novel

search techniques geared towards specific problems [20–24]. The former category

does not focus on complexity, often resulting in extremely long search costs and

training times, while the latter category is not generalized for different datasets or

geared towards training complexity reduction. For example, the final model found

in [24] takes 3 days to train on the small CIFAR-10 dataset. Thus, the issue of

training NNs being a major bottleneck is reinforced.

1.2 Dissertation Contributions

The contributions of this dissertation are broadly divided into three categories – a)

pre-defined sparsity for complexity reduction, b) Deep-n-Cheap – a customizable

AutoML framework trading off performance with complexity, and c) a family of

synthetic datasets for machine learning applications.

1.2.1 Pre-defined sparsity

1. We proposed the novel technique of pre-defined sparsity – a method to

reduce the complexity of NNs during both training and inference phases. This

technique applies to MLPs or the MLP portion of NNs. In particular, our

results show that MLP complexity, both in terms of the number of parameters

3

(storage) and the number of operations to be performed (computation), can

be reduced by factors greater than 5X without significant performance loss

[25–27].

2. We analyzed trends and design guidelines for selecting a pre-defined

sparse MLP [25, 26]. These studies help to accelerate the search for good

pre-defined sparse MLPs given any problem.

3. We proposed a hardware architecture to leverage the benefits of pre-

defined sparsity [25, 27]. The architecture is flexible in the sense that the

complexity of the network to be implemented is decoupled from the available

hardware resources on the given device (such as Field Programmable Gate

Array (FPGA)(s)). Thus, MLPs of varying sizes can be supported on various

hardware platforms. Moreover, the architecture supports both training and

inference phases of a MLP. To the best of our knowledge, we are the first to

propose such a flexible hardware architecture with the potential to accelerate

both training and inference.

4. We developed a working FPGA implementation of the hardware archi-

tecture [28]. This serves as a proof-of-concept of our ideas.

5. We proposed and analyzed the properties of a class of pre-defined sparse

MLP connection patterns which are suited to our hardware architecture

in the sense that they allow maximum throughput [25,29]. In particular, we

4

showed that such hardware-friendly sparse patterns result in no performance

degradation compared to other sparse patterns.

6. We developed a metric called scatter to characterize the ‘goodness’ of a con-

nection pattern in order to predict NN performance prior to training.

This is helpful in filtering out bad connection patterns without incurring the

computational expenses of training.

Our work on pre-defined sparsity can be found on Github [30].

1.2.2 Automated Machine Learning

7. We have developed Deep-n-Cheap – an open-source AutoML framework

which, to the best of our knowledge, is the first to target training complexity

reduction in terms of both time and storage. Deep-n-Cheap searches over

NN architectures and training settings and, at present, supports both CNNs

and MLPs.

8. We have developed Deep-n-Cheap in a way such that it offers users extensive

customizability options so as to be usable for both benchmark and custom

datasets.

9. We introduced the novel ramp distance to characterize the similarity

between different NN configurations.

5

10. We conducted investigations and drew various insights from our AutoML

work such as search transfer for generalizing NN architectures across differ-

ent architectures.

Our AutoML framework Deep-n-Cheap can be found on Github [31].

1.2.3 Dataset Engineering

11. We have created a family of synthetic datasets on classification of Morse

code symbols [32]. Owing to their algorithmic generation capability, it is

simple to tune the parameters of these datasets. This results in a large

number of classification problems of varying difficulty, which can be used to

benchmark different NNs and other machine learning algorithms. This work

resulted in a ‘Conference Best Paper’ award.

12. We developed several metrics to indicate the difficulty of a dataset

and evaluated their merits.

The Morse datasets are open-source and available on Github [33] and IEEE Data

Port [34].

1.3 Dissertation Organization

This dissertation is organized as follows. Chapter 2 contains background neces-

sary for understanding NNs and the work in this dissertation. Chapter 3 introduces

6

pre-defined sparsity, along with trends and guidelines for selecting connection pat-

terns. Chapter 4 discusses our hardware architecture and its FPGA implemen-

tation. Chapter 5 analyzes sparse connection patterns, and metrics to predict

NN performance. Chapter 6 discusses our efforts in creating a family of synthetic

datasets, along with metrics to characterize their difficulty. Chapter 7 discusses

Deep-n-Cheap, and associated contributions of our AutoML work. Finally, Chap-

ter 8 concludes this work.

7

Chapter 2

Background

In this chapter, we provide the background necessary for understanding the con-

cepts and terms used in this work. We will begin with mathematical notation,

then move on to notation and operations specific to neural networks.

2.1 Mathematical Notation

We will use the numerator layout convention for matrix calculus. A complete set

of rules for this convention is given in [35]. We summarize some of the key rules

below:

• Vectors are written as lower case bold letters, such as x, and can be either

row (dimensions 1×n) or column (dimensions n×1). Column vectors are the

default choice, unless otherwise mentioned. Individual elements are indexed

by bracketed superscripts, e.g. x(i), where i ∈ {1, · · · , n}.

8

• Matrices are written as upper case bold letters, such as X. A matrix with

dimensions m × n corresponds to m rows and n columns. Individual ele-

ments are indexed by bracketed double superscripts for row and column,

respectively, e.g. X(i,j), where i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}.

• The derivative of f with respect to x is
∂f

∂x
, where both x and f can

be scalars, vectors, or matrices. The gradient of f with respect to x is

∇xf =

(
∂f

∂x

)T
, i.e. gradient is transpose of derivative. The derivative is

important because it obeys the chain rule of calculus and helps to derive

several results. The gradient is important because it is the form used in

updating NN parameters, as will be described in Section 2.2.3.

Some relevant forms of derivatives and gradients are described next.

Scalar-by-scalar

Both f and x are scalars. We do not define the gradient in this case. The derivative

is the scalar
∂f

∂x
, also written as f ′.

Scalar-by-vector

f is a scalar, x is a vector of dimensions n× 1. Then the derivative is a 1× n row

vector:

∂f

∂x
=

[
∂f

∂x(1)
∂f

∂x(2)
· · · ∂f

∂x(n)

]
(2.1)

9

and the gradient ∇xf is its transposed column vector.

Vector-by-vector of equal size

Both f and x are vectors of dimensions n×1. Then the derivative is the Jacobian

matrix of dimensions n× n:

∂f

∂x
=



∂f (1)

∂x(1)
· · · ∂f (1)

∂x(n)

...

∂f (n)

∂x(1)
· · · ∂f (n)

∂x(n)


(2.2)

Vectorized scalar function

This is a scalar-to-scalar function applied element-wise to a vector, e.g. :

f





x(1)

x(2)

...

x(n)




=



f
(
x(1)
)

f
(
x(2)
)

...

f
(
x(n)
)


(2.3)

10

In this case, both the derivative and gradient are the same n × n diagonal

matrix, given as:

∇xf =



f ′
(
x(1)
) 0

f ′
(
x(2)
)

. . .

0 f ′
(
x(n)
)


(2.4)

An equivalent form of this is to take the diagonal and express it as a n × 1

vector:

f ′ =



f ′
(
x(1)
)

f ′
(
x(2)
)

...

f ′
(
x(n)
)


(2.5)

To realize the effect of this equivalent form, let’s say we want to multiply the

gradient ∇xf from (2.4) with some n-dimensional (column) vector a. Achieving

11

the same result with f ′ from (2.5) would require the Hadamard product ◦, defined

as element-wise multiplication of 2 vectors:

(∇xf)a = f ′(x) ◦ a =



f ′
(
x(1)
)
a(1)

f ′
(
x(2)
)
a(2)

...

f ′
(
x(n)
)
a(n)


(2.6)

2.2 Notation and Basic Operations for Neural Net-

works

A NN, sometimes referred to as an Artificial Neural Network to distinguish it from

biological neural networks found in living organisms, is an interconnected set of

nodes, or neurons, with the capability to learn mathematical representations of

the data fed to it. This ability to learn is referred to as training. Once a NN is

trained, it may be used for inference, where it is operated on new data different

from what it was trained on, and its performance based on some metric(s) is noted.

We will initially describe notation for a Multilayer Perceptron (MLP),

which is a commonly used NN for classification problems, and assume supervised

learning, i.e. where labels are provided for different training samples and the NN

is asked to learn from them.

12

A set of nodes is referred to as a layer. An (L + 1)-layer MLP has Ni nodes

in the ith layer, described collectively by the neuronal configuration Nnet =

(N0, N1, · · · , NL),1 where layer 0 is the input layer. We use the convention that

layer i is to the ‘right’ of layer i− 1, or ‘next’ to layer i− 1.

There are L junctions between layers, with junction i, i ∈ {1, 2, · · · , L}, con-

necting the Ni−1 nodes of its left layer i−1 with the Ni nodes of its right layer i. For

a Fully Connected (FC) MLP, all the nodes in a layer connect to all the nodes

in its next and previous layers, if present. These connections are defined using

edges, which have associated weight values. Weights in junction i are collected

as a matrix Wi
Ni×Ni−1

. Note that the rows (1st index) refer to the next layer, and the

columns (2nd index) refer to the previous layer. This is to facilitate matrix-vector

multiplications, as will be seen in (2.7a). Additionally, individual nodes in all lay-

ers except for the input have bias values. For layer i, the biases are collected as a

vector bi
Ni×1

.

Note that we denote layer or junction number via subscript. This is why we

denote individual elements of matrices and vectors as bracketed superscripts, as

shown in Section 2.1. For example b(3)2 refers to the bias of the 3rd neuron in layer

2, and W (4,5)
1 refers to the weight of the edge connecting the 5th node in layer 0 to

1We make a distinction between an ordered tuple of numbers providing information, such as
Nnet, and a vector, such as x. The former is not meant to be used in algebraic calculations,
hence its individual elements are written with round brackets around them. The latter is used in
algebra and hence its individual elements are written with the more conventional square brackets
around them, as in the equations presented so far in this chapter.

13

the 4th node in layer 1. This notation suits us since throughout this work we will

need to reference layer numbers far more than individual weight or bias values,

and hence benefit from using subscripts for layer number instead of the somewhat

inconvenient bracketed superscripts.

Weights and biases are all trainable parameters, which means that their val-

ues change during training. This is ideally done until the values converge, i.e. the

change in values obtained by training on more data is negligible. In practical sce-

narios, training is often stopped due to time or computational constraints instead

of waiting for convergence.

The processes of training and inference are affected by some values and decisions

which the network does not learn, instead, they are adjusted by an entity external

to the NN such as a human. These values are known as hyperparameters, and

describe quantities such as how many layers the network should have, how many

inputs should be trained on in parallel, and so on. The difficulty of designing

and adjusting hyperparameter values has led to a new branch of study known as

automated machine learning (AutoML), which will be expounded in Chapter

7.

Next we describe the three operations of a NN. These are summarized in Fig.

2.1.

14

Figure 2.1: Complete training flow for a single input sample for a MLP with Nnet =
(4, 3, 2). (a) Original NN, presented with an input a0 = [0.5, 0.4, 1, 0.7]T and correspond-
ing one-hot ground-truth labeling y = [0, 1]T . FF proceeds with ReLU and Softmax
activations for junctions 1 and 2 respectively, BP uses cross-entropy cost, and UP uses
η = 0.6. No regularization is applied and batch size M = 1. (b) After updating the
weights and biases of the original NN.

15

2.2.1 Feedforward (FF)

This process starts by accepting an external input datum. Each input is repre-

sented by a vector of features a0
N0×1

, and a ground truth labeling y
NL×1

denoting

the ideal output layer values. Then, ∀i ∈ {1, 2, · · · , L}, the FF operation proceeds

as:

si
Ni×1

= Wiai−1 + bi (2.7a)

ai
Ni×1

= h (si) (2.7b)

H ′i
Ni×Ni

=
∂ai
∂si

(2.7c)

where s is the linear output, h is the non-linear activation function, and a is

the activation output. Note that (2.7c) is not strictly a part of FF, but it is

sometimes computed since the derivative values are required for BP.

For most layers, h is a vectorized scalar function applied to si. In such cases,H ′i

is a diagonal matrix and can be reduced to the vector h′i
Ni×1

, as shown in Section 2.1.

One such common activation function which we will use frequently is Rectified

Linear Unit (ReLU) [36], shown below in its scalar-to-scalar form:

ReLU(x) =


x, x ≥ 0

0, x < 0

(2.8a)

16

Figure 2.2: Comparison of ReLU and sigmoid (a) activations, and (b) activation deriva-
tives.

ReLU′(x) =



1, x > 0

[0, 1], x = 0

0, x < 0

(2.8b)

An alternative to ReLU is the sigmoid function given as:

σ(x) =
1

1 + e−x
(2.9a)

σ′(x) = σ(x)(1− σ(x)) (2.9b)

Fig. 2.2 illustrates ReLU and sigmoid.

For the last layer (i = L) however, h is usually the softmax function which

outputs a probability distribution. This is a vector-to-vector function where each

17

element of the output vector depends on each element of the input vector, hence

H ′L is not (necessarily) a diagonal matrix.

aL = Softmax (sL) =

[
es

(1)
L∑NL

i=1 e
s
(i)
L

es
(2)
L∑NL

i=1 e
s
(i)
L

· · · es
(NL)

L∑NL

i=1 e
s
(i)
L

]T
(2.10)

2.2.2 Backpropagation (BP)

The final layer activations aL are compared with the ground-truth labels y to

compute a scalar cost (or loss) function C. The cost function we use is cross-

entropy:

C = −
NL∑
i=1

y(i) ln a
(i)
L (2.11)

The delta (or error) values for every layer are computed next. These are the

gradients of the cost with respect to s:

δL
NL×1

=

(
∂C

∂sL

)T
= H ′L

T∇aL
C (2.12a)

δi
Ni×1

=

(
∂C

∂si

)T
= H ′i

T
W T

i+1δi+1 ∀i ∈ {1, 2, · · · , L− 1} (2.12b)

The above equations can be derived using the chain rule for derivatives.

Classification is often done using one-hot labels, i.e. all the elements in y are

0s except for the correct class, which has value 1. For example, when classifying

18

an image of a digit into one out of ten possible classes 0 − 9, if the correct class

for a particular input sample is 3, its one-hot ground truth labeling would be

y = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T . For the commonly occurring case of one-hot labels,

cross-entropy cost, softmax activation for the output layer, and a scalar-to-scalar

activation applied element-wise to all other layers such as ReLU, (2.12) simplifies

to:

δL
NL×1

= aL − y (2.13a)

δi
Ni×1

=
(
W T

i+1δi+1

)
◦ h′i ∀i ∈ {1, 2, · · · , L− 1} (2.13b)

Note that the sigmoid derivative has a maximum value of 0.25, as shown in Fig.

2.2(b). As a result, the delta values can become very small when backpropagating

through deep networks. This phenomenon is known as the vanishing gradient

problem [37], and is the reason why sigmoid activations have generally fallen out

of favor with MLPs.

2.2.3 Update (UP)

The goal of training a NN is to minimize the cost. An optimization algorithm

commonly used for achieving this goal is Stochastic Gradient Descent (SGD),

wherein the value of a particular trainable parameter of the NN is updated using

the gradient of the cost with respect to it. The gradients for a single input sample

19

are given as ∇Wi
C = δia

T
i−1 and ∇biC = δi. Knowing the true gradient requires

knowledge of the underlying data distribution, which is usually not obtainable. In

SGD, the true gradients are approximated by averaging the single sample gradients

over a batch (sometimes called minibatch) of M input samples. This gives the

SGD update rule ∀i ∈ {1, 2, · · · , L} as:

Wi ←Wi −
η

M

M∑
m=1

(
δia

T
i−1
)[m] (2.14a)

bi ← bi −
η

M

M∑
m=1

(δi)
[m] (2.14b)

where η is the learning rate hyperparameter determining how fast the network

should learn, and square-bracketed superscript m denotes input sample number m

(not to be confused with round-bracketed superscripts for individual elements in

a vector or matrix).

While trainable parameters refers to weights and biases, we will use the

term network parameters to collectively refer to {ai,h′i, δi,Wi, bi}, ∀i ∈

{1, 2, · · · , L}. 2 These network parameters account for the total storage cost.

2The range of h′i is from 1 to L− 1 since final layer softmax derivatives are directly combined
with cost derivatives to yield δL.

20

2.3 Training and Inference

A NN is initially trained using all the operations described, i.e. FF, BP and

UP. Inputs are traversed in batches until all inputs in the training dataset are

exhausted, this constitutes an epoch of training. A NN can be trained for dozens

or even hundreds of epochs depending on the performance desired. Two metrics

for determining performance are a) the cost, which should be minimized, and more

commonly, b) the classification accuracy, computed as the fraction of inputs cor-

rectly classified, which should be maximized.

Validation is commonly done after every epoch to determine how the NN will

behave on unseen data. This validation data is a separate subset of the training

data. The hyperparameters are adjusted according to validation performance.

For example, if training performance keeps improving but validation performance

deteriorates, the NN is overfitting. This implies that the NN is learning its

training data ‘too well’ and failing to generalize on unseen data. This typically

happens when the number of trainable parameters is far more than the number of

input data samples. In such cases, training should be stopped, or regularization

may prove to be helpful.

Once training is complete, the NN performs inference on test data. Inference

performance, such as classification accuracy on test data, often serves as

the defining measure for the quality of a NN. Note that inference only involves

computation of (2.7a) and (2.7b), and hence is of much lower complexity than

21

Figure 2.3: Flowchart showing the correct way to use data and set parameters and
hyperparameters.

training. The complete cycle of using data for training and inference is summarized

in Fig. 2.3. Next we discuss some techniques used during training and inference.

Regularization

The idea behind regularization is to impose an additional constraint on the cost

objective to make the NN generalize better to unseen data (i.e. validation and test),

and combat overfitting. A typical way to do this is by imposing an L2 penalty

on the magnitudes of the weights. The regularized cost function becomes:

C = C0 + λ ‖W‖22 (2.15)

where C0 is the original cost function such as given in (2.11), λ is a hyperparameter

denoting the importance of making the weights small relative to minimizing the

original cost function, and W is the vector containing all the weights across all

22

junctions of the network, i.e. concatenation of the flattened matrices Wi ∀i ∈

{1, 2, · · · , L}. Typical values for λ range between 10−2 to 10−6.

Regularization helps to improve performance particularly when NN is over-

parametrized, i.e. it has a large number of trainable parameters. As we shall see

later in this work, imposing pre-defined sparsity is a form of regularization since

it reduces the number of trainable parameters.

Initializing trainable parameters

Initializing all weights to a constant such as 0 usually slows down learning. A

popular technique to initialize weights is according to a normal distribution, such

as Glorot Normal [38]

Wi ∼ N
(

0,
2

dini + douti

)
(2.16)

or He Normal [39]:

Wi ∼ N
(

0,
2

dini

)
(2.17)

where N (µ, σ2) denotes the Normal distribution with mean µ and variance σ2.

Biases can be initialized with 0s, or a small positive constant to help ReLU

units remain active (i.e. not operating on inputs less than 0).

23

Optimizer

SGD, as given in (2.14), is a baseline optimizer for reducing cost.

Other adaptive optimizers extend SGD by incorporating techniques such as

momentum and bias correction (see [40] for an overview of these tech-

niques). A popular optimizer is Adam [41], which has default values

(η = 0.001, ρ1 = 0.9, ρ2 = 0.999, ε = machine epsilon), and works as shown below

(for any arbitrary trainable parameter p).

v1 ← ρ1v1 + (1− ρ1)∇pC (2.18a)

v2 ← ρ2v2 + (1− ρ2) (∇pC)2 (2.18b)

ṽ1 =
v1

1− ρt1
(2.18c)

ṽ2 =
v2

1− ρt2
(2.18d)

p← p− η√
ṽ2 + ε

ṽ1 (2.18e)

where t is time, i.e. ρt1 is ρ1 raised to the tth power. Time is incremented after

each update (i.e. after the value of p changes). The time step at which the above

equations occur is t + 1, and the initial values for v1 and v2 are both 0. Note

that the final equation (2.18e) is similar to the regular SGD update equation with

M = 1.

24

A possible modification to Adam is to add a decay parameter d such that for

time step t+1, instead of using η, the optimizer uses
η

1 + dt
. This leads to smoother

convergence.

Dropout

The technique of dropout was introduced in [42]. Applying dropout to any layer

results in a fraction of nodes in that layer being dropped, i.e. zeroed out. The

nodes are randomly chosen for every batch, however, the fraction to be dropped

typically remains fixed and is referred to as the drop probability p. Dropout is

done only during training, and the learned weight values are multiplied by (1− p)

during inference to compensate.

Batch Normalization

Batch Normalization (BN) [43] has been found to be an effective in training deep

NNs. Typically intermediate outputs are normalized before applying the activation

function. Any variable x is normalized by subtracting its mean and dividing by

its standard deviation over a batch of samples, i.e. x ← x− µx
σx

. Following this,

the normalized variable is subjected to an affine transformation, i.e. x← γx+ β,

where γ and β are trainable parameters.

25

Figure 2.4: Example of a simple CNN for object classification, showing convolution,
pooling and FC layers. Figure modified from [44].

2.4 Convolutional neural networks

We introduced several core concepts of NNs using MLPs. This section introduces

CNNs – widely used for image classification. The dimensions of input images

is typically (c, h, w), which are respectively the number of channels (or filters),

height, and width. Channels for the input typically encode color information,

e.g. the input image of a bird in Fig. 2.4 has 3 channels for red, green and blue.

Like MLPs, CNNs are also a form of ‘feedforward’ NNs (not to be confused

with the FF operation) in the sense that there are no state variables and cycles

within the network. CNNs primarily include convolutional layers, which consist

of a number of filters of some kernel / window / filter size, which perform

a linear correlation operation on a group of nodes in a left layer, then apply a

non-linearity like ReLU to get the value of a single node in the right layer. This is

repeated for the next group of left nodes until the whole left layer is covered, and

then repeated for a certain number of channels.

26

Figure 2.5: Example of shortcut connections in a CNN, where each rectangular block is
a convolutional layer and the curved arrows are shortcuts. Figure courtesy [45, Fig. 2].

CNNs are typically deeper than MLPs, e.g. some popular CNNs in the liter-

ature have dozens of layers [12, 45]. Apart from convolutional layers, CNNs have

layers to downsample the image being processed, so as to preserve relevant, higher

order abstractions. This can be done via pooling layers, or using strides. The

latter skips nodes when applying the correlation filter, while the former considers

a group of adjacent nodes and preserves only a single value from them, such as the

maximum (max pooling), or the average (average pooling). The pool size refers to

the number of adjacent nodes being considered for pooling. Downsampling also

has the advantage of keeping the total number of nodes to a manageable number

since the number of filters increase as one goes deeper into the CNN. Accordingly,

some works [45] downsample each dimension of the image by a factor of 2 whenever

the number of filters doubles.

CNNs also typically have BN and dropout layers. A popular technique used

to alleviate the vanishing gradient problem in deep CNNs is to use shortcuts or

skip connections, introduced in [45]. These form direct paths between layers not

adjacent to each other, as shown in Fig. 2.5.

27

CNNs used for classification also perform FF, BP and UP operations. While

the ideas are the same as described in Section 2.2, the exact mathematical details

differ. In particular, the weights for a convolutional layer are collected in a 4-

dimensional tensor of dimensions (co, ci, h, w), which are respectively the number

of output channels (i.e. for the next convolutional layer), the number of input

channels (i.e. for the current convolutional layer being processed), the height, and

the width of the image. For the example in Fig. 2.4, let us assume the image is

of size 32× 32 pixels. The layer following the input has 5 filters, as shown. Thus,

the weight tensor has dimensions (5, 3, 32, 32).

As shown on the right side of Fig. 2.4, CNNs used for classification tasks some-

times have MLP layers following the convolutional portion. Prior to encountering

these, the outputs from the convolutional portion needs to be flattened, i.e. con-

verted from (c, h, w) format to a single dimension, i.e. N0 as per our MLP notation.

Typically a global average pooling layer precedes flattening, this is simply average

pooling with pool size equal to the image height and width such that the pool-

ing output is of dimensions (c, 1, 1). The MLP portion is followed by a softmax

classifier, as described previously in Section 2.2.1. Note that the MLP layers are

optional, in fact, this work discusses CNNs with them (Chapter 3), as well as

without them (Chapter 7).

Note that we are not going into the exact mathematical details for CNNs,

or into a further exposition of CNNs, since these are not relevant for this work.

28

Figure 2.6: Example of a RNN with input x, states s and output o. Time is denoted by
t, while U , V and W denote linear operations. Non-linear operations are not shown here
for simplicity. Figure courtesy [51, Fig. 4].

The interested reader is encouraged to visit various excellent resources such as

[44,46–50] for more details on CNNs.

2.5 Recurrent neural networks

Contrary to MLPs and CNNs, Recurrent Neural Networks (RNNs) have internal

states and may have cycles in their network structure. They are primarily used

for learning dependencies over time, such as speech or video signals. Such an

input signal is broken up into segments in time and may be operated on in a way

similar to MLPs, i.e. a linear combination followed by a non-linearity, to generate

intermediate states and outputs at different instances of time. A RNN is shown in

Fig. 2.6. However, we will not discuss RNNs in detail since they are not essential

for understanding this work.

29

Chapter 3

Pre-Defined Sparsity

This chapter discusses one of the major ideas driving our research – pre-defined

sparsity – which deletes parameters and simplifies a NN prior to training. We will

begin with related work for complexity reduction of NNs. This also includes hard-

ware implementations, which serve as related work for our own hardware efforts

described in Chapter 4.

3.1 Related Work

As mentioned in the Introduction, modern NNs suffer from parameter explosion

in the sense that the number of trainable parameters ranges from millions to bil-

lions [1, 5, 6, 39]. These demand large amounts of memory to store and arithmetic

resources to operate on, particularly during training. Moreover, training a network

with too many parameters makes it likely to overfit [52], and memorize undesirable

noise patterns [53]. However, most forms of complexity reduction aim to simplify

and accelerate the inference phase only, not the more complexity-intensive training

phase. Some of these are described next.

30

The work in [13] used vector quantization to compress the weights of deep

CNNs, while [14] grouped weights into hash buckets, effectively implementing a

form of coarser granularity in weight values. This approach is taken to its extreme

by using only values +1 and −1 for weights [54]. The efforts in [7, 15, 16] use a

number of techniques for reducing the storage footprint of the weights, such as

deleting weights with low values (pruning), retraining only necessary weights, and

Huffman coding for efficient storage. All these methods need to first train the

fully connected (FC) NN with all weights present, before deciding compression

strategies for inference. Similarly, other pruning and trimming methods post-

process a trained FC NN to remove weights [55–57].

The technique of dropout, introduced in Chapter 2, is an ensemble method

which actually increases overall training complexity since many different con-

figurations need to be trained. Moreover, the final NN used for inference is

FC, i.e. uncompressed. Other mathematical methods employed during training

include using low-precision arithmetic [58–61], special matrices to structure the

weights [62, 63], and regularizers to discard unimportant weights [64, 65] for infer-

ence, however, the latter two method classes lead to more efficient inference at the

cost of increased training complexity.

Some custom hardware implementations for NNs have been developed such as

Application Specific Integrated Circuit (ASIC)-based [16, 56, 66–69], and FPGA-

based [54, 55, 63, 70–72]. We note that while all these methods have achieved

31

excellent results in making inference faster and more efficient on-device, training

is typically done for the complete uncompressed network off-device, such as on a

power-hungry GPU or cloud server. Note that there have been some efforts in on-

device training [73–77]. However, these have not been targeted towards complexity

reduction and hence some have been limited to implementing NNs with a fairly

small number of total nodes – 21 in [75], 83 in [74], and a more impressive 221

in [73] (some of the pipelining ideas used in our hardware architecture described

in Chapter 4 were inspired by [73]).

In summary, based on related work and the present state of NNs, we identify

two open problems – a) Design methods and algorithms to reduce the complexity

of training NNs, and b) a flexible hardware architecture to support both low-

complexity training and inference on-device. This chapter proposes a method

aimed at tackling the first problem.

3.2 Structured Pre-defined sparsity

Pre-defined sparsity refers to a class of methods where a NN is made sparse by

removing some of its edges (connections) prior to training. This implies that both

training and inference use a NN of lower complexity as compared to a regular non-

sparse NN, such as one having FC layers. To the best of our knowledge, we are the

first to propose pre-defined sparsity as a technique for complexity reduction in [27].

32

Note that several other authors have recently proposed pre-defined sparsity [78–80]

independent of our work.

Note that our work on pre-defined sparsity applies to MLPs. Thus, when we

mention ‘NN’ in the context of our efforts on pre-defined sparsity, we are either

referring to a MLP, or to the MLP portion of a different NN (such as a CNN).

To understand pre-defined sparsity, we need to recall and add to the basic

definitions from Section 2.2. The out-degree of a node j in the left layer i− 1 of

junction i, douti
(j), is the total number of edges connecting it to layer i to its right.

Likewise, the in-degree of a node j in the right layer i of junction i, dini
(j), is the

total number of edges connecting it to layer i− 1 to its left. When these numbers

are constant for all nodes in a layer, the superscript can be omitted and we get

douti and dini for junction i. Note that for a conventional FC junction, douti = Ni

and dini = Ni−1. We refer to the total number of edges in junction i as |Wi|, thus

|Wi| = Ni−1Ni for FC.

ä Definition 1: Pre-defined sparsity : A junction i is pre-defined sparse if

it does not have all NiNi−1 edges present. A NN is pre-defined sparse if it has at

least one junction which is pre-defined sparse.

ä Definition 2: Structured pre-defined sparsity : Structured pre-defined

sparsity is pre-defined sparsity with fixed in- and out-degrees for each junction.

Thus, every node in layer i − 1 has a fixed douti ≤ Ni, and every node in

layer i has a fixed dini ≤ Ni−1. This leads to |Wi| = Ni−1d
out
i = Nid

in
i , thus

33

|Wi| ≤ Ni−1Ni. The density of junction i is measured relative to FC and denoted

as ρi = |Wi|/(Ni−1Ni). (Occasionally we may refer to sparsity as the opposite

of density, so a junction which is 20% dense is 80% sparse). As will be shown

in subsequent chapters, imposing the structured constraint leads to performance

improvement and ease of hardware implementation as compared to distributing

connections randomly. For the remainder of this work, pre-defined sparsity will

always refer to the structured form unless otherwise mentioned.

The overall density of a pre-defined sparse NN is defined as:

ρnet =

∑L
i=1 |Wi|∑L

i=1Ni−1Ni

=

∑L
i=1Ni−1d

out
i∑L

i=1Ni−1Ni

=

∑L
i=1Nid

in
i∑L

i=1Ni−1Ni

(3.1)

i.e. the total number of edges in the NN as a fraction of the total number of edges

in the corresponding FC NN. Thus, specifyingNnet = (N0, N1, · · · , NL) and either

of the out-degree configuration dout
net = (dout1 , dout2 , · · · , doutL) or the in-degree

configuration din
net = (din1 , d

in
2 , · · · , dinL) completely determines the density of each

junction and the overall density. Fig. 3.1 illustrates these basic concepts for a

simple MLP.

34

Figure 3.1: Illustrating basic concepts of structured pre-defined sparsity.

The ‘pre’ in pre-defined sparsity

We would like to emphasize that all densities of a pre-defined sparse NN are

set prior to training, and then held fixed throughout training and inference.

This means that the connection pattern, i.e. which node(s) connects to

which node(s) and which edges are present and absent, does not change for

the NN once it is set prior to training at the beginning.

As regards other NNs, the connection pattern in CNNs is different from MLPs

– every node in a convolution layer receives inputs from various filters applied

to a localized region of the inputs in its previous layer. For RNNs, a node may

receive raw inputs and those from adjacent network states, which themselves may

be MLPs or CNNs. A complete investigation of pre-defined sparsity for recurrent

35

and convolution layers is beyond the scope of this work, however, as will be shown

by our experiments, our efforts in pre-defined sparsity extend to MLP layers which

may be part of a different network such as a CNN. Note that followup work in our

research group [81] has applied pre-defined sparsity to convolutional layers [82,83].

3.2.1 Motivation and Preliminary Examples

Pre-defined sparsity can be motivated by inspecting the histogram for trained

weight values in a FC NN. There have been previous efforts to study such statistics

[7,84], however, not for individual junctions. Fig. 3.2 shows weight histograms for

each junction in both a 2-junction and 4-junction FC NN trained on the MNIST

dataset on handwritten digit classification (datasets will be described in more

detail in Section 3.3.1). Note that many of the weights are zero or near-zero after

training, especially in the earlier junctions. This motivates the idea that some

weights in these junctions could be set to zero (i.e. the edges excluded).

Even with this intuition, it is unclear that one can pre-define a set of weights

to be zero and let the NN learn around this constraint. Fig. 3.2(c) and (h) show

that, in fact, this is the case – i.e. this shows classification accuracy performance

on the test set as a function of the overall density ρnet for structured pre-defined

sparsity. The circled point on the extreme right of each subfigure is the FC case.

Note that even at ρnet = 20%, the degradation in classification performance is

36

within 1%. Since the computational and storage complexity is directly propor-

tional to the number of edges in the NN, operating at an overall density of 20%

results in a 5X reduction in complexity both during training and inference. These

preliminary examples serve to show the effectiveness of pre-defined sparsity

in reducing complexity of NNs while incurring minimal performance

loss. Detailed numerical experiments in Section 3.3 will further build on these

preliminary examples.

3.2.2 Structured Constraints

In terms of the weight matrix, if junction i is pre-defined sparse, then Wi has

zeroes indicating the absence of edges and non-zero elements indicating the weight

values of present edges. Note that in the course of random initialization or training

updates, weight values of present edges can also become zero. However, the absent

edges in a NN will always remain absent, i.e. :

I
(
W

(j,:)
i 6= 0

)
≤ dini ∀j ∈ {1, · · · , Ni} (3.2a)

I
(
W

(:,k)
i 6= 0

)
≤ douti ∀k ∈ {1, · · · , Ni−1} (3.2b)

where I is the indicator function, which has value 1 if its argument is true, otherwise

0.

37

Figure 3.2: Histograms of weight values in different junctions for FC NNs trained
on MNIST for 50 epochs, with (a-b) Nnet = (800, 100, 10), and (d-g) Nnet =
(800, 100, 100, 100, 10). Test set classification accuracy shown in (c,h) for different NNs
with same Nnet and varying ρnet. The FC cases (ρnet = 100%) are circled to provide
a baseline. The remaining ρnet values are set by reducing ρ1 since junction 1 has more
weights close to zero in the FC cases.

Imposing the structured constraint restricts the number of possible density

values. As an example, the NN shown in Fig. 2.1 with Nnet = (4, 3, 2) cannot

have dout1 = 2 (i.e. ρ1 = 2/3) since that would lead to din1 = 8/3, and a node cannot

have a fractional number of connections. This leads to:

38

Theorem 1

For a given junction i, the total number of different ρi values possible is

equal to the Greatest Common Divisor (gcd) of Ni and Ni−1.

Proof: Consider a NN junction i. Its density ρi cannot be arbitrary, since

ρi = douti /Ni = dini /Ni−1, where douti and dini are natural numbers satisfying the

equation Ni−1d
out
i = Nid

in
i . Therefore, the number of possible ρi values is the same

as the number of
(
douti , dini

)
values satisfying the structured pre-defined sparsity

constraints:

douti =
Nid

in
i

Ni−1
, dini ≤ Ni−1, douti , dini ∈ N (3.3)

where N denotes the set of natural numbers.

The smallest value of dini which satisfies douti ∈ N is Ni−1/gcd(Ni−1, Ni), and

other values are its integer multiples. Since dini is upper bounded by Ni−1, the total

number of possible
(
douti , dini

)
is gcd(Ni−1, Ni). Thus, the set of possible ρi is

{
ρi ∈ (0, 1]

∣∣∣∣ ρi =
k

gcd(Ni−1, Ni)
, k ∈ N

}
. (3.4)

which is a set of cardinality equal to the gcd of Ni and Ni−1.

As a concrete example, consider a NN with Nnet = (117, 390, 13) (this will

arise in our experiments on the TIMIT dataset described in Section 3.3). The

39

number of possible junction densities are gcd(117, 390) = 39 and gcd(390, 13) = 13.

Therefore, the possible junction densities are:

ρ1 ∈
{

1

39
,

2

39
, · · · , 39

39

}
, ρ2 ∈

{
1

13
,

2

13
, · · · , 13

13

}
. (3.5)

The above proof and example for Theorem 1 was achieved in collaboration with

Kuan-Wen Huang.

3.2.3 Modifications to Neural Network Operations

The basic operations of a NN – FF, BP and UP – are modified for the case

of structured pre-defined sparsity. The primary change is that only the present

weights are used for computation, which leads to reduction in complexity. Now

we will present the modified equations for the commonly occurring case of one-hot

labels, cross-entropy cost, softmax activation for the output layer, and a scalar-

to-scalar activation applied element-wise to all other layers. The matrix-vector

products are split into summations to highlight usage of only the present weights.

The FF equations (2.7) become:

s
(j)
i =

dini∑
f=1

W
(j,kf)
i a

(kf)
i−1 + b

(j)
i (3.6a)

a
(j)
i = h

(
s
(j)
i

)
(3.6b)

h′
(j)
i =

∂a
(j)
i

∂s
(j)
i

(3.6c)

40

where (3.6a) and (3.6b) are ∀i ∈ {1, 2, · · · , L}, and (3.6c) is ∀i ∈ {1, 2, · · · , L−1}.

This is because softmax activation derivatives are directly combined with cross-

entropy cost derivatives in the final layer to give (3.7a), hence are not separately

required to be computed.

The BP equations (2.13) become:

δ
(j)
L = a

(j)
L − y

(j) (3.7a)

δ
(j)
i = h′

(j)
i

douti∑
f=1

W
(kf ,j)
i+1 δ

(kf)
i+1

 (3.7b)

where (3.7b) is ∀i ∈ {1, 2, · · · , L− 1}.

The UP equations (2.14), assuming batch sizeM = 1 to reduce clutter, become:

b
(j)
i ← b

(j)
i − ηδ

(j)
i (3.8a)

W
(j,k)
i ← W

(j,k)
i − ηa(k)i−1δ

(j)
i (3.8b)

where both (3.8a) and (3.8b) are ∀i ∈ {1, 2, · · · , L}, and (3.8b) is only for those

(j, k) node pairs which have an edge connecting them.

For all the equations (3.6)–(3.8) above, the single superscript j refers to nodes in

a layer and hence has range {1, 2, · · · , Ni}. Double superscripts denote only those

edges which are present. For example, in (3.6a), the summation for a particular row

j ofWi is carried out over dini different values fromW
(j,k1)
i toW

(j,k
din
i
)

i . Considering

Fig. 3.1 as a concrete example, when doing the computation for the 1st right neuron

41

in junction 1 (i.e. i = 1, j = 1), we get k1 = 5 and k2 = 7. This is because nodes

5 and 7 from layer 0 connect to node 1 of layer 1.

This concludes the theory relating to pre-defined sparsity. In the next section,

we present related performance results.

3.3 Performance Results, Trends and Guidelines

Fig. 3.2(c) and (h) showed some preliminary examples regarding the potential

of pre-defined sparsity to reduce complexity with minimal degradation in perfor-

mance. This section analyzes results and trends observed when experimenting

with several different classification datasets via software simulations. We intend

the following to provide guidelines on designing pre-defined sparse NNs.

Guidelines for designing pre-defined sparse NNs

1. The performance of pre-defined sparsity is better on datasets that have

more inherent redundancy (Section 3.3.2).

2. Junction density should increase to the right, i.e. junctions closer to

the output should generally have more density than junctions closer to

the input (Section 3.3.3).

3. Larger and more sparse NNs are better than smaller and denser NNs,

given the same number of layers and trainable parameters. Specifically,

‘larger’ refers to more hidden neurons (Section 3.3.4).

42

The reader is reminded that when we refer to pre-defined sparsity, we are

actually referring to structured pre-defined sparsity, i.e. fixed in- and out-degrees.

The remainder of this section first describes the datasets we experimented on, and

then examines these trends in detail.

3.3.1 Datasets and Experimental Configuration

NNs for classification need significant amounts of quality labeled data to train

and perform inference. Here we discuss some widely used datasets made publicly

available for this purpose, and the training configuration we designed for each of

them.

MNIST handwritten digits [85]

The Modified National Institute of Standards and Technology (MNIST) database

has 70,000 images of handwritten digits from 0 − 9, split into 60,000 for training

and 10,000 for test. We further split the training set into 50,000 for actual train-

ing and 10,000 for validation. Each image is 28 × 28 pixels of varying shades of

gray values, from 0 signifying completely black to 255 signifying completely white.

We rasterized each input image into a single layer of 784 features. This is the

permutation-invariant format, wherein spatial information from the inputs are not

used, implying that the ordering of the 784 pixels is not important. On certain

occasions we added 16 input features which are always trivially 0 so as to get 800

43

features for each input. This leads to easier selection of different sparse network

configurations. In Fig. 3.2(c) for example, we used 800 input neurons and 100

hidden neurons since gcd(800, 100) > gcd(784, 100), so more values of ρnet could

be simulated. We verified that adding extra always-0 input features did not alter

performance. Also note that no data augmentation was applied.

Reuters RCV1 corpus of newswire articles [86]

Reuters Corpus Volume I (RCV1) is an archive of newswire stories, each assigned

categories based on its content. The classification categories are grouped in a

tree structure, e.g. a top-level category like politics can be subdivided into second

level categories for international, national and state, international can be further

subdivided into third level categories for Asia, Africa and so on. An article can

have multiple categories, however, we used preprocessing techniques inspired by [4]

to isolate only those articles which belonged to a single second level category. We

finally obtained 328,669 articles in 50 categories, split into 50,000 for validation,

100,000 for test, and the remaining 178,669 for training.

The original data has a list of token strings for each story, for example, a story

on finance would frequently contain the token ‘financ’ (which can refer to ‘finance’,

‘financial’, ‘financier’ and so on). We chose the most common 2000 tokens across

all articles and computed counts for each of these in each article. Each count x

44

was transformed into log(1 + x) to form the final 2000-dimensional feature vector

for each input.

TIMIT speech corpus [87]

TIMIT (presumably abbreviated from Texas Instruments, Massachusetts Institute

of Technology) is a speech dataset comprising approximately 5.4 hours of 16 kHz

audio commonly used in ASR. A modern ASR system has three major components:

(i) preprocessing and feature extraction, (ii) acoustic model, and (iii) dictionary

and language model. A complete study of an ASR system is beyond the scope of

this work. Instead we focus on the acoustic model which is typically implemented

using a NN. The input to the acoustic model is feature vectors and the output is

a probability distribution on phonemes (i.e. speech sounds), i.e. the classification

targets for our experiments are different phonemes. We used a phoneme set of size

39 as defined in [88].

We extracted 25ms speech frames with 10ms shift, as in [4], and computed a

feature vector of 39 Mel-frequency Cepstral Coefficients (MFCCs) for each frame.

MFCCs are obtained from a sequence of operations – windowing, Fourier trans-

form, mapping powers on to mel scale [89], taking logarithm, discrete cosine trans-

form, measuring amplitude. We used the complete training set of 818,837 training

samples (462 speakers), 89,319 validation samples (50 speakers), and 212,093 test

samples (118 speakers).

45

CIFAR images [90]

The Canadian Institute For Advanced Research (CIFAR) datasets come in two

forms – 10 classes (CIFAR-10), and 100 classes (CIFAR-100). Each has 50,000

training samples (which we split into 40,000 for actual training and 10,000 for

validation), and 10,000 test samples. The samples are images with dimensions

(c, h, w) = 3, 32, 32, and depict objects such as different vehicles and animals. We

experimented on the CIFAR-100 dataset with a CNN. The CNN has 3 blocks,

each block has 2 convolution layers with window size 3 × 3 followed by a max

pooling layer of pool size 2×2. The number of filters for the six convolution layers

are (from left to right) 60, 60, 125, 125, 250 and 250. This results in a total of

approximately one million trainable parameters in the convolutional portion of the

network. Batch normalization is applied before activations. The output from the

3rd block, after flattening into a vector, has 4000 features. This is the input to

a MLP. Typically dropout is applied in the MLP portion, however we omitted

it there since pre-defined sparsity is an alternate form of parameter reduction.

Instead we found that a dropout probability of 0.5, i.e. half the nodes and weights

dropped for each batch of training, applied to the convolution blocks improved

performance. No data augmentation was applied.

46

Experimental Configuration

For each dataset, we performed classification using one-hot labels and measured

accuracy on the test set as a performance metric.1 We also calculated the top-5

test set classification accuracy for CIFAR-100, i.e. the percentage of samples for

which the ground-truth label was among the top 5 softmax outputs of the network.

We found the optimal training configuration and hyperparameters for each FC

setup by doing a grid search using validation performance as a metric. This resulted

in choosing ReLU activations for all layers except for the final softmax layer. He

initialization worked best for the weights; while for biases, we found that an initial

value of 0.1 worked best in all cases except for Reuters, for which zeroes worked

better. The Adam optimizer was used with all parameters set to default, except

that we set the decay parameter to 10−5 for best results. We used a batch size of

1024 for TIMIT and Reuters since the number of training samples is large, and 256

for MNIST and CIFAR. All experiments were run for 50 epochs of training and all

1The NN in a complete ASR system would be a ‘soft’ classifier and feed the phoneme distribu-
tion outputs to a decoder to perform ‘hard’ final classification decisions. Therefore for TIMIT, we
computed another performance metric called Test Prediction Comparison (TPC), measured as
KL divergence between predicted test output probability distributions of sparse vs the respective
FC case. In other words,

TPC =
1

212093

212093∑
i=1

39∑
j=1

Aij log
(
Aij

Bij

)
(3.9)

where A
212093×39

and B
212093×39

are the complete output test matrices for the 212,093 test samples

with 39 labels each for the FC and sparse cases, respectively. Lesser values of TPC are better as
they indicate minimal performance degradation due to sparsification. We found that performance
results obtained using the TPC metric were qualitatively very similar to those obtained from the
test accuracy metric, hence we omit the TPC results.

47

hyperparameters listed so far were kept the same when sparsifying the network to

maintain consistency.

The only exception is regularization. We found from validation that sparser

networks need lesser regularization than denser networks. This confirms our belief

that pre-defined sparse NNs are less prone to overfitting due to having

fewer trainable parameters. Accordingly we applied an L2 penalty to the

weights, but reduced the coefficient λ as ρnet decreased.

Each experiment was run at least five times to average out randomness and the

90% Confidence Intervals (CIs) for each metric are shown as shaded regions (this

also holds for the results in Fig. 3.2(c,h)).

Experiments were conducted using the Keras deep learning library [91] (version

2.2.x) with Tensorflow [92] 1.x backend.

3.3.2 Dataset Redundancy

Many machine learning datasets have considerable redundancy in their input fea-

tures. For example, one may not need information from the ∼800 input features of

MNIST to infer the correct image class. We hypothesize that pre-defined sparsity

takes advantage of this redundancy, and will be less effective when the redundancy

is reduced. To test this, we changed the feature vector for each dataset as follows:

• MNIST: Principal Component Analysis (PCA) is a technique to compute

variances in each feature across all inputs in the dataset, and assign more

48

‘importance’ to features with large variance. This is because such features

are more discriminatory, i.e. observing their values will provide the network

with more information. We used PCA to reduce the feature count of MNIST

to the most important (least redundant) 200, i.e. a factor of ∼4X.

• Reuters: Size of the feature vector is the number of most frequent tokens

considered. We reduced this from 2000 to 400, i.e. by 5X.

• TIMIT: We both reduced and increased the number of MFCCs by 3X to 13

and 117, respectively. Note that the latter increases redundancy.

• CIFAR-100: In the CNN used for CIFAR, a source of redundancy is the depth

of the convolution+pooling portion which extracts features and discriminates

between classes before the MLP performs final classification. In other words,

the convolution blocks ease the burden of the MLP. So a way to reduce

redundancy and increase the classification burden of the MLP is to lessen the

effectiveness of the convolution layers by reducing their number. Accordingly,

we used a single convolution layer with 250 filters of window size 5×5 followed

by a 8 × 8 max pooling layer. This results in the same number of features,

4000, at the input of the MLP as the original network, but has reduced

redundancy for the MLP.

49

Figure 3.3: Comparison of classification accuracy as a function of ρnet for different
versions of datasets – original, reduced in redundancy by reducing feature space (MNIST,
Reuters, TIMIT) or performing less processing prior to the MLP (CIFAR-100), and
increasing redundancy by enlarging feature space (TIMIT). Higher density points for
MNIST are magnified.

Classification performance results are shown in Fig. 3.3 as a function of ρnet.

For MNIST and CIFAR-100, the performance degrades more sharply with reduc-

ing ρnet for the networks using the reduced redundancy datasets. To explore this

further, we recreated the histograms from Fig. 3.2 for the reduced redundancy

datasets, i.e. a FC NN with Nnet = (200, 100, 10) training on MNIST after PCA.

50

Figure 3.4: Comparing histograms of weight values for (a) original MNIST with Nnet =
(800, 100, 10), and (b) MNIST reduced to least redundant 200 features such that Nnet =
(200, 100, 10), after training FC NNs for both.

We observed a wider spread of weight values, implying less opportunity for sparsi-

fication (i.e. fewer weights were close to zero), as shown in Fig. 3.4. Similar trends

are less discernible for Reuters and TIMIT, however, reducing redundancy led to

worse performance overall.

The results in Fig. 3.3 further demonstrate the effectiveness of pre-defined

sparsity in greatly reducing network complexity with negligible performance degra-

dation. For example, even the reduced redundancy problems perform well when

operating with half the number of connections. For CIFAR in particular, FC per-

forms worse than an overall MLP density of around 20%. Thus, in addition to

reducing complexity, structured pre-defined sparsity may be viewed as an alterna-

tive to dropout in the MLP for the purpose of improving classification.

51

3.3.3 Individual junction densities

The weight value histograms in Figs. 3.2 and 3.4 indicate that latter junctions,

particularly junction L closest to the output, have a wide spread of weight values.

This suggests that a good strategy for reducing ρnet would be to use lower densities

in earlier junctions, i.e. ρ1 < ρL.

This is demonstrated in Fig. 3.5 for the cases of MNIST, CIFAR-100 and

Reuters, each with L = 2 junctions in their MLPs. Each curve in each subfigure

is for a fixed ρ2, i.e. reducing ρnet across a curve is done solely by reducing ρ1. For

a fixed ρnet, the performance improves as ρ2 increases. For example, the circled

points in Reuters both have ρnet = 4%, but the starred point with ρ2 = 100% has

approximately 40% better test accuracy than the pentagonal point with ρ2 = 2%.

The trend clearly holds for MNIST and Reuters, and is also discernible for CIFAR-

100.

This trend extends to NNs with more than two junctions. Fig. 3.6 compares

classification performance by trading off ρ2 and ρ3 (keeping ρ1 fixed) for different

three-junction NNs training on MNIST. For each individual plotted curve (same

color), ρ3 is kept constant and ρnet is varied by varying ρ2. Note that all the

results are qualitatively similar to Fig. 3.5, i.e. for the same ρnet, better results are

obtained for higher values of ρ3. Note that ρ1 is fixed for each subfigure at fairly

low values, as given in the caption of Fig. 3.6. We also experimented with keeping

ρ1 fixed at higher values, such as 50%. Since the input layer has the most neurons,

52

Figure 3.5: Comparison of classification accuracy as a function of ρnet for different ρL,
where L = 2. Black-circled points show the effects of ρ2 when ρnet is the same. Nnet

values are (800, 100, 10) for MNIST, (2000, 50, 50) for Reuters, and (4000, 500, 100) for
the MLP portion in CIFAR-100.

this resulted in junction 1 dominating the total number of weights. As a result,

changing ρ2 and ρ3 had little effect on accuracy. Hence we decided to include the

more interesting low ρ1 cases in Fig. 3.6.

We further observed that this trend of ρi+1 > ρi improving performance is

related to the redundancy inherent in the dataset, and may not hold for datasets

with very low levels of redundancy. To explore this, results analogous to those

in Fig. 3.5 are presented in Fig. 3.7 for TIMIT, but with varying sized MFCC

feature vectors – i.e. datasets corresponding to larger feature vectors will contain

more redundancy. The results in Fig. 3.7(c) are for 117-dimensional MFCCs and

53

Figure 3.6: Comparison of classification accuracy as a function of ρnet for ρ2 vs ρ3 in
three-junction MNIST networks, keeping ρ1 fixed. (a) Nnet = (800, 100, 100, 10), ρ1 =
10%, (b) Nnet = (800, 100, 200, 10), ρ1 = 4%, (c) Nnet = (800, 200, 100, 10), ρ1 = 1%.

are consistent with the trend in Fig. 3.5. However, for a MFCC dimension of 13,

this trend actually reverses – i.e. junction 1 should have higher density for better

performance. This is shown in Fig. 3.7(b), where each curve is for a fixed ρ1. This

reversed trend is also observed for the case of 39 dimensional feature vectors, con-

sidered in Fig. 3.7(a), where Nnet = (39, 390, 39). Due to this symmetric neuronal

configuration, for each value of ρnet on the x-axis in Fig. 3.7(a), the two curves have

complementary values of ρ1 and ρ2 (ρ1 6= ρ2) – e.g. the two curves at ρnet = 7.69%

have (ρ1, ρ2) values of (2.56%, 12.82%) and (12.82%, 2.56%). We observe that the

curve for ρ1 < ρ2 is generally worse than the curve for ρ2 < ρ1, which indicates

that junction 1 should have higher density for improving performance in this case

as well.

Fig. 3.7(d) depicts the results for Reuters with the feature vector size reduced

to 400 tokens. While junction 2 is still more important (as in Fig. 3.5(c) for

54

Figure 3.7: Comparison of classification accuracy as a function of ρnet for: (a) TIMIT
with 39 MFCCs for the two cases where one junction is always sparser than the other and
vice-versa. Black-circled points show how reducing ρ1 degrades performance to a greater
extent. (b) TIMIT with 13 MFCCs for different ρ1. (c,d) TIMIT with 117 MFCCs, and
Reuters reduced to 400 tokens, for different ρ2. Nnet values are (a) (39, 390, 39), (b)
(13, 390, 39), (c) (117, 390, 39), (d) (400, 50, 50).

the original Reuters dataset), notice the circled star-point at the very left of the

ρ2 = 100% curve. This point has very low ρ1. Unlike Fig. 3.5(c), it crosses below

the other curves, indicating that it is more important to have higher density in the

first junction with this less redundant set of features.

55

In summary, if an individual junction density falls below a certain value,

referred to as the critical junction density, it will adversely affect performance

regardless of the density of other junctions. This explains why some of the curves

cross in Fig. 3.7. The critical junction density is much smaller for earlier junctions

than for later junctions in most datasets with sufficient redundancy. However, the

critical density for earlier junctions increases for datasets with low redundancy.

3.3.4 ‘Large and sparse’ vs ‘small and dense’ networks

As mentioned previously, NNs with lower values of ρnet need lower values of the

L2 penalty coefficient λ for regularization. This raises the question – why not

design a small FC NN, i.e. one with a small number of nodes in its layers? This

would also have a low number of parameters to begin with and would thus have

low complexity.

We experimented with this aspect and observed that when keeping the total

number of trainable parameters the same, sparser NNs with larger hidden layers

(i.e. more neurons) generally performed better than denser networks with smaller

hidden layers. This is true as long as the larger NN is not so sparse that individual

junction densities fall below the critical density, as explained in Sec. 3.3.3. While

the critical density is problem-dependent, it is usually low enough to obtain sig-

nificant complexity savings above it. Thus, ‘large and sparse’ is better than ‘small

56

Figure 3.8: Comparing ‘large and sparse’ to ‘small and dense’ networks for MNIST with
784 features, with (a) Nnet = (784, x, 10) (on the left), and (b) Nnet = (784, x, x, x, 10)
(on the right). Solid curves (with the shaded CIs around them) are for constant x, black
dashed curves with same marker are for same number of trainable parameters. The final
junction is always FC. Intermediate junctions for the L = 4 case have dout values similar
to junction 1.

and dense’ for many practical cases, including NNs with more than one hidden

layer (i.e. L > 2).

Fig. 3.8 shows this for networks having one (two) and three (four) hidden lay-

ers (junctions) trained on MNIST. For the four-junction network, all hidden layers

have the same number of neurons. Each solid curve shows classification perfor-

mance vs ρnet for a particular Nnet, while the black dashed curves with identical

markers are configurations that have approximately the same number of train-

able parameters. As an example, the points with circular markers (with a big

blue ellipse around them) in Fig. 3.8(b) all have the same number of trainable

parameters and indicate that the larger, more sparse NNs perform better. Specif-

ically, the network with Nnet = (784, 112, 112, 112, 10) and dout
net = (10, 10, 10, 10)

57

Figure 3.9: Comparing ‘large and sparse’ to ‘small and dense’ networks for Reuters with
2000 tokens, with Nnet = (2000, x, 50). The x-axis is split into higher values on the left
(a), and lower values on the right in log scale (b). Solid curves (with the shaded CIs
around them) are for constant x, black dashed curves with same marker are for same
number of trainable parameters. Junction 1 is sparsified first until its number of total
weights is approximately equal to that of junction 2, then both are sparsified equally.

corresponding to ρnet = 9.82% performs significantly better than the FC network

with Nnet = (784, 14, 14, 14, 10), and other smaller and denser networks, despite

each having 11,500 trainable parameters. Increasing the network size further to

Nnet = (784, 224, 224, 224, 10), and reducing ρnet to 4% to fix the number of train-

able parameters at 11,500 leads to performance degradation. This is because this

ρnet was achieved by setting ρ2 = ρ3 = 2.68%, which appears to be below the

critical density.

Fig. 3.9 summarizes the analogous experiment on Reuters with similar conclu-

sions. Both subfigures are for the same results with the x-axis split into higher and

lower density range (on log scale), to show more detail. Observe that the trend of

‘large and sparse’ being better than ‘small and dense’ holds for subfigure (a), but

58

reverses for (b) since densities are very low (the black dashed curves have positive

slope instead of negative). This is due to the critical density effect.

Fig. 3.10(a) shows the result for the same experiment on TIMIT with four

hidden layers. The trend is less clearly discernible, but it exists. Notice how the

black dashed curves have negative slopes at appreciable levels of ρnet, indicating

‘large and sparse’ being better than ‘small and dense’, but high positive slopes

at low ρnet, indicating the rapid degradation in performance as density is reduced

beyond the critical density. This is exacerbated by the fact that TIMIT with 39

MFCCs is a dataset with low redundancy, so the effects of very low ρnet are better

observed.

Fig. 3.10(b) for the MLP portion of CIFAR-100 shows similar results as TIMIT,

but on a log x-scale for more clarity. As noted in Sec. 3.3.2, the best performance

for a given Nnet occurs at an overall density less than 100%. It appears that for

anyNnet for CIFAR-100, peak performance occurs at around 10–20% overall MLP

density. We are intrigued by this trend, and plan to investigate further.

Some results have been omitted due to being qualitatively similar to those

already shown. These are experiments on TIMIT with L = 2 (similar to 3.10(a)),

Reuters with L = 3 (similar to 3.9), and CIFAR100 with the reduced redundancy

having a single convolutional layer (similar to 3.10(b)).

59

Figure 3.10: Comparing ‘large and sparse’ to ‘small and dense’ networks for (a) TIMIT
with 39 MFCCs and Nnet = (39, x, x, x, x, 39) (on the left), and (b) CIFAR-100 with the
deep 9-layer CNN and MLP Nnet = (4000, x, 100) with log scale for the x-axis (on the
right). Solid curves (with the shaded CIs around them) are for constant x, black dashed
curves with same marker are for same number of trainable parameters (in the MLP
portion only for CIFAR). Since TIMIT has symmetric junctions, we tried to keep input
and output junction densities as close as possible and adjusted intermediate junction
densities to get the desired ρnet. CIFAR-100 is sparsified in a way similar to Reuters in
Fig. 3.9.

3.4 Summary

This chapter introduced the concept of pre-defined sparsity as a method of com-

plexity reduction and presented performance results indicating its effectiveness and

delineating trends to design such sparse NNs. Apart from published papers, our

work is also available on Github [30]. The next chapter will present a concrete

application of complexity reduction – a hardware architecture we designed and

implemented to leverage pre-defined sparsity.

60

Chapter 4

Hardware Architecture

This chapter describes our proposed flexible hardware architecture which can lever-

age structured pre-defined sparsity to both train and test NNs of any complexity

on-device. We begin with an overview of the key features, which are encapsulated

in Fig. 4.1.

ä Definition 3: Degree of parallelism: The degree of parallelism zi is the

number of edges processed in parallel in junction i.

Thus, we call our architecture edge-based. zi determines the number of clock

cycles taken to process a complete junction. Fig. 4.1(a) shows an example junction

i with 6 edges processed using zi = 3. The zi = 3 blue edges are processed in cycle

0 (we begin numbering from 0), and the remaining zi = 3 pink edges in cycle 1. A

given hardware device can support some largest values of {zi}, so NNs with more

edges will simply take more cycles to process.

For a given processing operation in junction i, there are zi computational units

to perform it and zi memories to store each quantity associated with it. This is

shown in Fig. 4.1(b) for the FF operation, i.e. there are zi = 3 computational

61

Figure 4.1: (a) Processing zi = 3 edges in each cycle (blue in cycle 0, pink in cycle 1) for
some junction i with a total of 6 edges. (b) Accessing zi = 3 memories – M0, M1 and M2
shown as columns – from two separate banks, one in natural order (same address from
each memory), the other in interleaved order. Clash-freedom is achieved by accessing
only one element from each memory. The accessed values are fed to zi = 3 processors to
perform FF simultaneously. (c) Operational parallelism in each junction (vertical dotted
lines denote processing for one junction), and junction pipelining of each operation across
junctions (horizontal dashed lines) for different inputs.

units FF0–FF2. A challenge with this architecture is that in order to achieve high-

throughput without memory duplication, the parallel memories must be accessed

in two manners: natural order and interleaved order. Natural order accesses

62

memory elements sequentially. Interleaved order leads to the possibility of memory

contention. This leads us to define:

ä Definition 4: Clash: A clash arises if the same memory needs to be accessed

multiple times in the same cycle, which may lead to stalls and/or wait states.1

ä Definition 5: Clash-free: The clash-free condition occurs when the NN

connection pattern and hardware architecture is designed such that no clashes

occur during memory accesses.

Thus, the zi computational units must access the memories such that no clashes

and memory contention occur. Natural and interleaved order accesses are shown

for zi = 3 memories on the bottom and top of Fig. 4.1(b), respectively. Notice

that there is only one shaded cell per column in cycle 0. The unshaded cells will

be accessed in cycle 1. The concept of clash-freedom is tied to the connection

patterns in the junctions, as will be expounded in Chapter 5.

Apart from clash-freedom to maximize throughput, some other characteristics

regarding memory requirements guided us in developing the proposed architecture.

Firstly, since weight memories are the largest (i.e. the number of weights is more

than any other network parameter), their number should be minimized. Secondly,

having a few deep memories is more efficient in terms of power and area than

1Some multi-ported memories can be accessed more than once in a cycle, however, clashes can
still occur when trying to access more elements than the number of ports. To be more specific, a)
for single-ported memories, attempting two reads or two writes or a read and a write in the same
cycle is a clash, and b) for simple dual-ported memories with one port exclusively for reading
and the other exclusively for writing, a read and a write can be performed in the same cycle, but
attempting to perform two reads or two writes in the same cycle will result in a clash.

63

having many shallow memories [93]. These help to alleviate the key concern of large

storage requirement when implementing NNs in hardware. Memory organization

is described in Section 4.2.

In addition to edge processing in a given junction, our architecture is pipelined

across junctions. Thus, the zi values are selected to set the number of cycles

required to process a layer to a constant – i.e. junctions with more weights have

larger zi so that the computation time of all junctions is the same. Furthermore,

the three operations associated with training are performed in parallel,

i.e. FF, BP, and UP. These concepts are shown in Fig. 4.1(c) and elaborated

in Section 4.1. An (L + 1)-layer NN has L junction pipeline stages so that the

throughput, i.e. the frequency of processing input samples, is determined by the

time taken to perform a single operation in a single junction.

Summary of architectural features

1. Edge-based, i.e. not tied to a specific number of nodes in a layer.

2. Flexible, i.e. the amount of logic is determined by the degree of par-

allelism which trades size for speed. This means that the architecture

is also compatible with conventional FC junctions, as will be shown in

Section 4.6.

64

3. Fully pipelined for the parallel operations associated with NN training.

The architecture can also operate in inference only mode by eliminat-

ing the logic and memory associated with BP and UP, and the h′

computations in (3.6c).

4.1 Junction pipelining and Operational paral-

lelism

Our edge-based architecture is motivated by the fact that all three operations – FF,

BP, UP – use the same weight values for computation. Since zi edges are processed

in parallel in a single cycle, the time taken to complete an operation in junction

i is Ci = |Wi| /zi cycles. The degree of parallelism configuration znet =

(z1, · · · , zL) is chosen to achieve Ci = C ∀ i ∈ {1, · · · , L}. This allows efficient

junction pipelining since each operation takes exactly C cycles to be completed

for each input in each junction, which we refer to as a junction cycle. This

determines throughput.

The following is an analysis of Fig. 4.1(c) in more detail for an example NN

with L = 2. While a new training input numbered n + 3 is getting loaded as a0,

junction 1 is processing the FF stage for the previous input n+ 2 and computing

a1. Simultaneously, junction 2 is processing FF and computing cost δL via cost

65

Figure 4.2: Architecture for parallel operations for an intermediate junction i (i 6= 1, L)
showing the three operations along with associated inputs and outputs. Natural and
interleaved order accesses are shown using solid and dashed lines, respectively. The a
and h′ memory banks occur as queues, the δ memory banks as pairs, while there is a
single weight memory bank.

derivatives for input n + 1. It is also doing BP on input n to compute δ1, as well

as updating (UP) its parameters from the finished δL computation of input n.

Simultaneously, junction 1 is performing UP using δ1 from the finished BP results

of input n− 1.2 This results in operational parallelism in each junction, as shown

in Fig. 4.2. The combined speedup is approximately a factor of 3L as compared

to doing one operation at a time for a single input.

Notice from Fig. 4.2 that there is only one weight memory bank which is

accessed for all three operations. However, UP in junction 1 needs access to a0 for

input n−1, as per the weight update equation (3.8b). This means that there need

to be 2L+1 = 5 left activation memory banks for storing a0 for inputs n−1 to n+3,

2Note that BP does not occur in the first junction because there are no δ0 values to be
computed

66

Table 4.1: Hardware Architecture Total Storage Cost Comparison for Nnet =
(800, 100, 10) FC vs sparse with dout

net = (20, 10), ρnet = 21%

Parameter Expression Count (FC) Count (sparse)

a
∑L−1

i=0 (2(L− i) + 1)Ni 4300 4300

h′
∑L−1

i=1 (2(L− i) + 1)Ni 300 300

δ 2
∑L

i=1Ni 220 220

b
∑L

i=1Ni 110 110

W
∑L

i=1Nid
in
i 81000 17000

TOTAL Σ (All above) 85930 21930

i.e. a queue-like structure. Similarly, UP in junction 2 will need 2(L− 1) + 1 = 3

queued banks for each of its left activation a1 and its derivative h′1 memories –

for inputs from n (for which values will be read) to n + 2 (for which values are

being computed and written). There also need to be 2 banks for all δ memories –

1 for reading and the other for writing. Thus junction pipelining requires multiple

memory banks, but only for layer parameters a, h′ and δ, not for weights. The

number of layer parameters is insignificant compared to the number of weights for

practical networks. This is why pre-defined sparsity leads to significant storage

savings, as quantified in Table 4.1 for the circled FC point vs the ρnet = 21%

point from Fig. 3.2(c). Specifically, memory requirements are reduced by 3.9X

in this case. Furthermore, the computational complexity, which is proportional

to the number of weights for a MLP, is reduced by 4.8X. For this example, these

complexity reductions come at a cost of degrading the classification accuracy from

98.0% to 97.2%.

67

4.2 Memory organization

For the purposes of memory organization, edges are numbered sequentially from

top to bottom on the right side of the junction. Other network parameters such

as a, h′ and δ are numbered according to the neuron numbers in their respective

layer. Consider Fig. 4.3 as an example, where junction i is flanked by Ni−1 = 12

left neurons with douti = 2 and Ni = 8 right neurons, leading to |Wi| = 24 and

dini = 3. The three weights connecting to right neuron 0 are numbered 0, 1, 2;

the next three connecting to right neuron 1 are numbered 3, 4, 5, and so on. A

particular right neuron connects to some subset of left neurons of cardinality dini .

Each type of network parameter is stored in a bank of memories. The

example in Fig. 4.3 uses zi = 4, i.e. 4 weights are accessed per cycle. We designed

the weight memory bank to have the minimum number of memories to prevent

clashes, i.e. zi, and their depth equals Ci. Weight memories are read in natural

order – 1 row per cycle (shown in same color).

Right neurons are processed sequentially due to the weight numbering. The

number of right neuron parameters of a particular type needing to be accessed in

a cycle is upper bounded by
⌈
zi/d

in
i

⌉
, which leads to zi+1 ≥

⌈
zi/d

in
i

⌉
in order to

prevent clashes in the right memory bank. (This does not limit most practical

designs, as will be shown in Section 4.5). For FF in Fig. 4.3 for example, cycles

0 and 1 finish computation of a(0)i and a
(1)
i respectively, while cycle 2 finishes

computing both a(2)i and a(3)i . For BP or UP, everything remains same except for

68

Figure 4.3: An example of processing inside junction i with zi = 4 memories in the weight
and left banks, and zi+1 = 2 memories in the right bank. The banks are represented as
numerical grids, each column is a memory, and the number in each cell is the number
of the edge / left neuron / right neuron whose parameter value is stored in it. Edge
are sequentially numbered on the right (shown in curly braces). zi = 4 weights are read
in each of the six cycles, with the first three colored blue, pink and green, respectively.
These represent sweep 0, while the next 3 (using dashed lines) colored brown, red and
purple, respectively, represent sweep 1. Clash-freedom leads to at most one cell from each
memory in each bank being accessed each cycle. Weight and right memories are accessed
in natural order, while left memories are accessed in interleaved order.

the right memory accesses. Now δ
(0)
i and δ(1)i are used in cycle 0, δ(1)i and δ(2)i in

cycle 1, and δ(2)i and δ(3)i in cycle 2. Thus the maximum number of right neuron

parameters ever accessed in a cycle is
⌈
zi/d

in
i

⌉
= 2.

69

Since edges are interleaved on the left, in general, the zi edge processing logic

units will need access to zi parameters of a particular type from layer i − 1. So

all the left memory banks have zi memories, each of depth Di = Ni−1/zi, which

are accessed in interleaved order. For example, after Di cycles, Ni−1 edges have

been processed – i.e. (Di × zi) = Ni−1. We require that each of these edges be

connected to a different left neuron to eliminates the possibility of duplicate edges.

This completes a sweep, i.e. one complete access of the left memory bank. Since

each left neuron connects to douti edges, douti sweeps are required to process all the

edges, i.e. each left activation is read douti times in the whole junction cycle. The

reader can verify that Di cycles multiplied by douti sweeps results in Ci total cycles,

i.e. one junction cycle.

4.3 Clash-freedom

We define a clash as attempting to perform a particular operation more than once

on the same memory at the same time, which would stall processing. The idea of

clash-freedom is to pre-define a pattern of connections and z values such that no

operation in any junction of the NN results in a clash. Section 4.2 described how

z values should be designed to prevent clashes in the weight and right memory

banks.

This subsection analyzes the left memory banks, which are accessed in inter-

leaved order. Their memory access pattern should be designed so as to prevent

70

clashes. Additionally, the following properties are desired for practical clash-free

patterns. Firstly, it should be easy to find a pattern that gives good performance.

Secondly, the logic and storage required to generate the left memory addresses

should be low complexity.

We generate clash-free patterns by initially specifying the left memory addresses

to be accessed in cycle 0 using a seed vector φi ∈ {0, 1, · · · , Di − 1}zi . Subse-

quent addresses are cyclically generated. Considering Fig. 4.3 as an example,

φi = (1, 0, 2, 2). Thus in cycle 0, we access addresses (1, 0, 2, 2) from memo-

ries (M0,M1,M2,M3), i.e. left neurons (4, 1, 10, 11). In cycle 1, the accessed

addresses are (φi + 1) %Di = (2, 1, 0, 0), and so on. Since Di = 3, cycles 3–5

access the same left neurons as cycles 0–2.

We found that this technique results in a large number of possible connection

patterns, and randomly sampling from this set results in performance comparable

with non-clash-free NNs. These ideas are further discussed in Chapter 5.

4.4 Batch size

As shown in (2.14), for a batch size of M , the UP operation in (3.8) is performed

only once for M inputs by using the average over the M gradients. Our architec-

ture performs an UP for every input and therefore may be viewed as having batch

size one. However, the processing in our architecture differs from a typical software

71

implementation with M = 1 due to the pipelined and parallel operations. Specifi-

cally, in our architecture, FF and BP for the same input use different weights, as

implied by Fig. 4.1(c). However, this deviation from the conventional notion of

batch size did not result in performance degradation in our initial hardware imple-

mentation (presented in Section 4.7). We would also like to point out that there

is considerable ambiguity in the literature regarding ideal batch sizes (cf. [94,95]).

The concept of batch size for our architecture can be modified in several differ-

ent ways. Firstly, by performing UP once every (M > 1) samples. As an example,

a practical case for a deep MLP could be M = 64 and L = 5. For all such

cases where M >> L, FF and BP will use the same weights for most inputs in a

batch. Secondly, a more conventional minibatch update can also be obtained by

completely removing the UP logic from the junction pipeline. After performing

FF and BP on M samples, the pipeline will be flushed and the averaged gradients

overM samples used to update all parameters in all junctions simultaneously. This

would eliminate the UP arithmetic units from the pipeline, at the cost of increased

storage for accumulating intermediate values from (3.8). However, we have not

implemented these ideas in actual hardware yet.

4.5 Architectural Constraints

The depth of left memories in our hardware architecture is Di = Ni−1/zi. Thus

Ni−1 should preferably be an integral multiple of zi. This is not a burdening

72

constraint since the choice of zi is independent of network parameters and depends

on the capacity of the device. In the unusual case that this constraint cannot be

met, the extra cells in memories can be filled with dummy values such as 0.

There are also 2 conditions placed on the zi values to eliminate stalls in pro-

cessing: for all layers i ∈ {1, · · · , L}, (i) |Wi| /zi = C, and (ii) zi+1 ≥
⌈
zi/d

in
i

⌉
. Let

us examine how much of a burden these constraints impose on choosing a network

configuration. Without loss of generality, (i) can be written as:

|Wi+1|
zi+1

=
|Wi|
zi

⇒ zi+1 =
|Wi+1| zi
|Wi|

⇒ zi+1 =
zid

out
i+1

dini
(4.1)

Then (ii) becomes:

zid
out
i+1

dini
≥
⌈
zi
dini

⌉
⇒ douti+1 ≥

dini
zi

⌈
zi
dini

⌉
(4.2)

which needs to be satisfied ∀ i ∈ {1, · · · , L− 1}.

In practice, it is desirable to design zi/dini to be an integer so that an integral

number of right neurons finish processing every cycle. This simplifies hardware

implementation by eliminating the need for additional storage, for example, of the

73

intermediate activation values during FF. In this case, (4.2) reduces to douti+1 ≥ 1,

which is always true.

For non-integral zi/dini , there are two cases. If zi > dini , (4.2) reduces to douti+1 ≥ 2.

On the other hand, if zi < dini , there is no bound on the right hand side of (4.2). In

general, note that (4.2) becomes a burdening constraint only if dini is large, and douti+1

and zi are both desired to be small. This corresponds to earlier junctions being

denser than later, which is typically not desirable according to the observations in

Sec. 3.3.3, or to very limited hardware resources. We thus conclude that (4.2) is

not a limiting constraint in most practical cases.

4.6 Special Case: Processing a FC junction

Fig. 4.4 shows the FC version of the junction from Fig. 4.3, which has 96 edges

to be accessed and operated on. This can be done keeping the same junction cycle

Ci = 6 by increasing zi to 16, i.e. using more hardware. On the other hand, if

hardware resources are limited, one can use the same zi = 4 and pay the price

of a longer junction cycle Ci = 24, as shown in Fig. 4.4. This demonstrates the

flexibility of our architecture.

Note that FC junctions are clash-free in all practical cases due to the following

reasons. Firstly, the left memory accesses are in natural order just like the weights,

which ensures that no more than one element is accessed from each memory per

cycle. Secondly,
⌈
zi/d

in
i

⌉
= 1 for all practical cases since zi ≤ Ni−1, as discussed

74

Figure 4.4: Processing the FC version of the junction from Fig. 4.3. For clarity, only
the first 12 and last 12 edges (dashed) are shown, corresponding respectively to right
neurons 0 and 7, sweeps 0 and 7, cycles 0–2 and 21–23.

in Section 4.5, and dini = Ni−1 always for FC junctions. This means that at most

one right neuron is processed in a cycle, so clashes will never occur when accessing

the right memory bank. As an example, in Fig. 4.4, one right neuron finishes

processing every 3rd cycle.

75

Note that compared to Fig. 4.3, the weight memories in Fig. 4.4 are deeper

since Ci has increased from 6 to 24. However, the left layer memories remain

the same size since Ni−1 = 12 and zi = 4 are unchanged, but the left memory

bank is accessed more times since the number of sweeps has increased from 2

to 8. Also note that even if cycle 0 (blue) accesses some other clash-free subset

of left neurons, such as {4, 5, 6, 7} instead of {0, 1, 2, 3}, the connection pattern

would remain unchanged. This implies that different memory access patterns do

not necessarily lead to different connection patterns. This point will be discussed

further in Chapter 5.

4.7 FPGA Implementation

This section describes our implementation of the architecture described thus far.

Certain efforts in this implementation were achieved by Diandian Chen, – such

as Universal asynchronous receiver-transmitter (UART) interfacing and observing

outputs via Light Emitting Diodes (LEDs) – and hence have not been presented

in detail in this dissertation.

We developed our implementation on a Digilent Nexys-4 DDR board contain-

ing a FPGA from the Xilinx Artix-7 family with part number XC7A100T-

1CSG324C [96]. This is a fairly modest FPGA in terms of capacity and per-

formance, cf. the Xilinx Virtex UltraScale+ series [97] or the cloud-based FPGAs

from Amazon Web Services [98] for more powerful alternatives. However, our

76

purpose was to obtain an initial proof-of-concept in which we could explore effi-

cient design styles and optimize the Verilog Register Transfer Level (RTL) code

to make it more robust and scalable. The Artix-7 device serves this purpose.

We are currently associated with the Scalable Acceleration Platform Integrating

Reconfigurable Computing and Natural Language Processing Technologies (SAPI-

ENT) team and the University of Southern California Information Sciences Insti-

tute (USC ISI) in extending the RTL to run on more powerful FPGAs. The

development was achieved using the Xilinx Vivado software environment.

Our initial proof-of-concept implementation used the MNIST dataset. We used

powers of 2 for most network configuration values to simplify the hardware realiza-

tion. Accordingly we padded each input with 0s to extend the number of features

from 784 to 1024 (this does not alter performance, as mentioned in Section 3.3.1),

and each ground-truth output with 0s to extend the number of labels from 10 to

32. Note that the output encoding remains one-hot.

4.7.1 Network Configuration and Training Setup

We implemented a structured pre-defined sparse NN with Nnet = (1024, 64, 32)

and dout
net = (4, 16), leading to ρnet = 7.576%. The complete configuration is given

in Table 4.2. The values shown were chosen on the basis of hardware constraints

and experimental results, which will be described in Sections 4.7.2 and 4.7.3.

77

Table 4.2: Implemented Network Configuration

Junction Number (i) 1 2

Left Neurons (Ni−1) 1024 64

Right Neurons (Ni) 64 32

Out-degree (douti) 4 16

Number of Weights (|Wi| = Ni−1 × douti) 4096 1024

In-degree (dini = Wi/Ni) 64 32

zi 128 32

Junction cycle (|Wi| /zi) a 32 32

Density (ρi = Wi/(Ni−1Ni)) 6.25% 50%

Overall Density ρnet = 7.576%

aIn terms of number of clock cycles. Not considering the additional clock cycles needed for
memory accesses.

We selected 12,544 inputs to comprise 1 epoch of training. Learning rate (η) is

initially 2−3, decay is implemented by halving after the first 2 epochs, then after

every 4 epochs until its value became 2−7. Designing η to always be a power of 2

leads to the multiplications with η in eq. (3.8) getting reduced to bit shifts. Pre-

defined sparsity leads to a total number of trainable parameters = (|W1| = 4096)+

(|W2| = 1024) + (|b1| = N1 = 64) + (|b|2 = N2 = 32) = 5216, which is much less

than 12,544, so we theorized that overfitting was not an issue. We verified this

using software simulations, and hence did not apply any regularization.

78

4.7.2 Bit Width Considerations

Parameter Initialization

We initialized weights using the Glorot Normal technique (2.16), which translates

to a three standard deviation range of ±0.51 for junction 1 and ±0.61 for junction

2 in our NN configuration described in Table 4.2.

The biases in our architecture are stored along with the weights as an augmen-

tation to the weight memory banks. So we initialized biases in the same manner

as weights. Software simulations showed that this led to no degradation in per-

formance from the conventional method of initializing biases with constant values

such as 0 or 0.1. This makes sense since the maximum absolute value from ini-

tialization is much closer to 0 than their final values when training converges, as

shown in Fig. 4.5.

To simplify the RTL, we used the same set of |Wi| /zi unique values to initialize

all weights and biases in junction i. Again, software simulations showed that

this led to no degradation in performance as compared to initializing all of them

randomly. This is not surprising since an appropriately high value of initial learning

rate will drive each weight and bias towards its own optimum value, regardless of

similar values at the start.

79

Figure 4.5: Maximum absolute values (left y-axis) for all weights, biases, and deltas in
the NN, and percentage classification accuracy (right y-axis), as the NN is trained.

Fixed Point Configuration

We recreated the aforementioned initial conditions in software and trained our

configuration to study the range of values for network variables until convergence.

The results for are shown in Fig. 4.5 for all weights, biases and delta values. We

used the sigmoid activation function for our hardware implementation, which has

output range = [0, 1].

To keep the hardware optimal, we decided on the same fixed point bit con-

figuration for all computed values of network parameters — {ai,h′i, δi,Wi, bi},

i ∈ {1, 2}. This uses less hardware resources compared to implementations such as

a) [60], which uses fixed point adders, but more resource-intensive floating point

80

multipliers and floating-to-fixed-point converters, or b) [59], which incurs addi-

tional Digital Signal Processing (DSP) resources due to its use of probabilistic

fixed point rounding techniques.

Our configuration is characterized by the bit triplet (bw, bn, bf), which are

respectively the total number of bits, integer bits, and fractional bits, with the

constraint bw = bn + bf + 1, where the 1 is for the sign bit. This gives a numerical

range of [−2bn , 2bn − 2−bf] and precision of 2−bf . Fig. 4.5 shows that the maxi-

mum absolute values of various network parameters during training stays within

8. Accordingly we set bn = 3. We then experimented with different values for the

bit triplet and obtained different utilizations for the FPGA Look Up Table (LUT)

(i.e. logic) resources. The results are shown in Table 4.3. For this hardware imple-

mentation, we measured accuracy as classification performance on the last 1000

training samples3. Noting the diminishing returns and impractical utilization of

hardware resources for high bit widths, we chose the bit triplet (12, 3, 8) as being

the optimal case, i.e. our results are from a 12-bit implementation. Later on

we will also discuss a 10-bit implementation.

3This differs from the conventional method of measuring performance as classification accuracy
on the test set. We chose the last 1000 training samples to measure performance on in order to
simplify the measurement techniques for this initial proof-of-concept implementation.

81

Table 4.3: Effect of Bit Width on Performance

bw bn bf FPGA LUT Accuracy after Accuracy after
Utilization % 1 epoch 15 epochs

8 2 5 37.89 78 81
10 2 7 72.82 90.1 94.9
10 3 6 63.79 88 93.8
12 3 8 83.38 90.3 96.5
16 4 11 112 91.9 96.5

Dynamic Range Reduction due to Sparsity

We found that sparsity leads to reduction in the dynamic range of network param-

eters, since the summations in (3.6) and (3.7) are over smaller ranges. This moti-

vated us to use a special form of adder and multiplier which preserves the bit

triplet between inputs and outputs by clipping large absolute values of output to

either the positive or negative maximum allowed by the range. For example, 10

would become 7.996 and −10 would become −8.

Fig. 4.6 analyzes the worst clipping errors by comparing the absolute values of

the argument of the sigmoid function in the hidden layer, i.e. s1 =
∑
W1a0 + b1

from (3.6a), for our sparse case vs. the corresponding FC case (which would have

dout1 = 64, dout2 = 32). Notice that the sparse case only has 17% of its values

clipped due to being outside the dynamic range afforded by bn = 3, while the FC

case has 57%. The sparse case also has a smaller variance. This implies that the

hardware errors introduced due to finite bit-width effects are less pronounced for

our pre-defined sparse configuration as compared to FC.

82

Figure 4.6: Histograms of absolute value of s1 with respect to dynamic range for (a)
sparse vs. (b) fully connected cases, as obtained from software simulations. Values right
of the pink line are clipped.

Why we chose sigmoid activations?

As has been amply demonstrated in literature (e.g. [1, 12, 45]), the ideal ReLU

activation function ((2.8)) is more widely used than sigmoid ((2.9)) due to the

former’s better performance. This is primarily due to elimination of the vanishing

gradient problem. Note also that ReLU has a tendency towards generating sparse

outputs, i.e. several nodes output zero values for activation.

83

Figure 4.7: Comparison of activation functions for a1, as obtained from software simu-
lations.

However, ideal ReLU is not practical for hardware due to its unbounded range.

We experimented with a modified form of ReLU where the outputs were clipped to

a) 8, which is the maximum supported by bn = 3, and b) 1, to preserve bit width

consistency in the multipliers and adders and ensure compatibility with sigmoid

activations. Fig. 4.7 shows software simulations comparing sigmoid with these

cases. Note that ReLU clipped at 8 converges similar to sigmoid, but sigmoid has

better initial performance. Also, there is no need to promote extra sparsity by

using ReLU because our configuration is already sparse. Finally, in our hardware

implementation, sigmoid does not suffer from vanishing gradient problems due to

just having two junctions. We therefore concluded that sigmoid activation is the

84

best choice for all layers. For the output layer, we simply picked the correct class

as corresponding to the output node with the maximum sigmoid output value.

4.7.3 Implementation Details

Sigmoid Activation

The sigmoid function uses exponentials, which are computationally infeasible to

obtain in hardware. So we pre-computed the values of σ(·) and σ
′
(·) and stored

them in LUTs. Interpolation was not used, instead we computed sigmoid for all

4096 possible 12-bit arguments up to the full 8 fractional bits of accuracy. On the

other hand, its derivative values were computed to 6 fractional bits of accuracy

since they have a range of [0, 2−2]. The number of sigmoid LUTs required is∑L
i=1 zi/d

in
i = 3.

Arithmetic Units

As indicated in Table 4.2, we designed zi/dini to be an integer for both junctions,

which ensures that in every cycle, an integral number of right neurons finish their

FF processing. This implies that the FF summations in (3.6a) can occur in a

single cycle, and eliminates the need for storing partial sums. The total number

of multipliers required for FF is
∑L

i=1 zi = 160. The summations also use a tree

adder of depth = log2
(
dini
)
for every neuron processed in a cycle.

85

The BP summation in (3.7b) will need several cycles to complete for a single left

neuron since weight numbering is permuted on the left. This necessitates storing∑L
i=2 zi partial sums, however, tree adders are no longer required. Note that (3.7b)

has 2 multiplications, and moreover, BP does not occur in the first junction, so

the total number of multipliers required for BP is 2
∑L

i=2 zi = 64.

The UP operation in each junction i requires zi adders for the weights and zi/dini

adders for the biases, since that many right neurons are processed every cycle. Only

the weight update requires multipliers, so their total number is
∑L

i=1 zi = 160.

Our FPGA device has 240 DSP blocks. Accordingly, we implemented the 224

FF and BP multipliers using 1 DSP for each, while the other 160 UP multipliers

and all adders were implemented using logic.

Memories and Data

All memories were implemented using Block Random Access Memory (BRAM).

The memories for a and h′ never need to be read from and written into in the same

cycle, so they are single-port. The δ memories are true dual-port, i.e. both ports

support reads and writes. This is required due to their read-modify-write nature,

since they accumulate partial sums. The ‘weight+bias’ memories are simple dual-

port, with one port used exclusively for reading the kth cell in cycle k, and the

other for simultaneously writing the (k − 1)th cell. These were initialized using

Glorot normal values while all other memories were initialized with zeroes.

86

Note that regardless of access order, the logic to compute memory addresses

simply consists of zi incrementers. This is because natural order accesses occur

sequentially, while interleaved order accesses also occur sequentially according to

the seed vector. A more complete description of clash freedom is deferred to

Chapter 5.

The ground truth one-hot encoding for all 12,544 inputs were stored in a single-

port BRAM, and initialized with word size = 10 to represent the 10 MNIST

outputs. After reading, the word was padded with 0s to make it 32-bit long. On the

other hand, the input data was too big to store on-chip. Since the native MNIST

images are 28×28 = 784 pixels, the total input data size is 12544×784×8 = 78.68

Mb, while the total device BRAM capacity is only 4.86 Mb. So the input data was

fed from a host computer using the UART interface.

Network Configuration

Here we explain the choice of NN configuration in Table 4.2. We initially picked

N2 = 16, which is the minimum power of 2 above 10. Since later junctions need

to be denser than earlier ones to improve performance, we experimented with

junction 2 density and show its effects on performance in Fig. 4.8. We concluded

that 50% density is optimum for junction 2. Attempting to meet the architectural

constraints in Section 4.5 led to z1 = 256, which was beyond the capacity of our

FPGA. So we increased N2 to 32 and set z2 to the minimum value of 32, leading

87

Figure 4.8: Performance for different ρ2, keeping ρ1 fixed at 6.25%, as obtained from
software simulations.

to z1 = 128. We also experimented with dout1 = 8, but the resulting accuracy was

within 1 percentage point of our final choice of dout1 = 4.

Results

We stored the results of several training inputs and fed them out to 10 LEDs

on the board, each representing an output from 0-9. The FPGA implementation

performed according to RTL simulations and close to the ideal floating point soft-

ware simulations, giving 96.5% accuracy in 14 epochs of training. Additionally, we

also used Vivado to test a 10-bit implementation corresponding to the bit triplet

(10, 2, 7) – this yielded 95% accuracy. Fig. 4.9 shows our FPGA implementation

in action.

88

Figure 4.9: Our design working on the Xilinx XC7A100T-1CSG324C FPGA.

Timing and Additional Pipelining

A junction cycle in our design is actually (|Wi| /zi + 2) = 34 clock cycles since each

set of zi weights in a junction need a total of 3 clock cycles for each operation,

as explained in Fig. 4.10. To summarize, the first and third are used to compute

memory addresses, while the second is the most time-consuming since it performs

most of the arithmetic computations. This determines our clock frequency, which

is 15MHz. For the additional 10-bit case, the clock frequency is 20MHz.

One way to improve the clock frequency is to insert pipeline stages in the middle

cycle of the three required for each operation, as shown in Fig. 4.10 (this is not

to be confused with junction pipelining). There is, however, an issue here. The

calculation of δ values for BP is done by reading the δ memories, modifying values,

and writing back. This read-modify-write operation takes place multiple times in

89

Figure 4.10: Breaking up each operation into 3 clock cycles.

a junction cycle, and the memory addresses accessed are repeated in cycles. Since

the depth of the δ memories is Ni−1/zi, the read-modify-write operation must

finish in Ni−1/zi−1 cycles to preserve fidelity of the δ values. Thus, the maximum

number of extra pipeline stages than can be inserted is Ni−1/zi − 2.

In Table 4.2 for example, no pipeline stages can be inserted since junction 2

has Ni−1/zi = 64/32 = 2. We attempted to insert 2 extra pipeline stages and,

although the clock frequency went up from 15 MHz to 25 MHz for the 12-bit case

and from 20 MHz to 30 MHz for the 10-bit case, the accuracy dropped (expectedly,

since the δ values are not accurate) to 88% for 12-bit and 85% for 10-bit.

To properly experiment with the introduction of extra pipeline stages, we imple-

mented a new network configuration with Nnet = (1024, 128, 32), dout
net = (4, 8),

90

i.e. din
net = (32, 32), and znet = (128, 32). This results in Ni−1/zi = 4 for junction

2, so 2 extra pipeline stages can be inserted. We inserted these and the perfor-

mance was exactly the same as the non-pipelined case, while the clock frequency

improved as described above – 25 MHz for the 12-bit case and 30 MHz for the

10-bit case.

4.8 Summary

This chapter described our proposed hardware architecture and detailed an ini-

tial FPGA implementation we developed. While this is a good initial proof-of-

concept, there are significant engineering tasks required to demonstrate state-of-

the-art training speeds. However, we have characterized possible pipelining options

to speed up the design and are currently working with other hardware teams to

further develop this work.

91

Chapter 5

Connection Patterns

A fully connected neural network consists of fully connected junctions, i.e. every

node in a layer connects to every node in its previous and next layer. This gives

rise to a single possible connection pattern. On the other hand, a structured

pre-defined sparse NN with a fixed Nnet and dout
net has several different ways of

connecting the nodes in each junction. Fig. 5.1 illustrates this for a single junction

with 4 left nodes and 2 right nodes. Subfigure (a) shows the FC case, while

subfigures (b)–(g) show the six possible ways to arrange the connections for the

50% density case.

In practice, we desire connection patterns which give good performance and

are hardware friendly, i.e. lead to clash-free memory accesses and are simple to

implement. The remainder of this chapter will elaborate on these ideas.

5.1 Biadjacency Matrices

First we will introduce a useful concept. The biadjacency matrix for a bipartite

graph is a rectangular matrix with 1 and 0 denoting the presence and absence of

an edge, respectively [99]. Accordingly:

92

Figure 5.1: Different connection patterns for a single-junction network with Nnet =
(4, 2). (a) The FC case, with just one possible connection pattern. (b)–(g) Six different
ways of arranging connections when doutnet = (1), i.e. dinnet = (2). Notice that in each case,
each left node has exactly one outgoing connection and each right node has exactly two
incoming connections.

ä Definition 6: Biadjacency matrix : The biadjacency matrix Bi
Ni×Ni−1

for

junction i is defined such that B(j,k)
i = 1 if an edge exists between node k in layer

i− 1 and node j in layer i, otherwise B(j,k)
i = 0.

Then, if junction i is structured pre-defined sparse, Bi has exactly dini 1s in

each row and exactly douti 1s in each column, i.e. :

1TBi = douti 1T (5.1a)

Bi1 = dini 1 (5.1b)

93

where 1 is the vector of all 1s with size set by the context. Moreover, the density

can be computed as the fraction of 1s in the biadjacency matrix:

ρi =

∑Ni

j=1

∑Ni−1

k=1 B(j,k)
i

NiNi−1
(5.2)

Now we attempt to tackle the question of the number of possible connection

patterns in a junction i, which we denote as Gcp
i . We saw that the single junction

in Fig. 5.1 with the structured constraints douti = 1 and dini = 2 had Gcp
i = 6.

These are the six possible (2× 4) {0, 1}-only matrices with each row summing to

2 and each column summing to 1, as given below:


1 1 0 0

0 0 1 1

 ,
1 0 1 0

0 1 0 1

 ,
1 0 0 1

0 1 1 0

 ,
0 1 1 0

1 0 0 1

 ,
0 1 0 1

1 0 1 0

 ,
0 0 1 1

1 1 0 0




Generalizing this, we can state:

Theorem 2

Given a junction i with Ni−1, Ni and ρi (from which douti and dini can be

computed), the number of possible connection patterns it can have, Gcp
i ,

is the same as the number of possible matrices of dimensions Ni × Ni−1

94

consisting only of {0, 1} entries such that sum of each row equals dini and

sum of each column equals douti .

Moreover, the number of possible connection patterns in a complete L-junction

NN is

Gcp
net =

L∏
i=1

Gcp
i (5.3)

Finding the exact value of Gcp
i for any junction may not be feasible, cf. [100].

However, computing the exact value is usually of little interest. As will be dis-

cussed subsequently, finding a class of connection patterns with certain desirable

properties is of more importance.

5.2 Clash-free memory access patterns

Section 4.3 introduced the idea of a clash as attempting to perform a particular

operation more than once on the same memory at the same time, which would

stall processing. For convenience in the upcoming discussion, Fig. 4.3 is repeated

as Fig. 5.2.

Our edge-based architecture described in Chapter 4 is inspired by architec-

tures proposed for iterative decoding of modern sparse-graph-based error correction

codes (i.e. Turbo and Low Density Parity Check (LDPC) codes) (cf., [101, 102]).

95

For modern codes, the clash-free property of the memories is ensured by defining

clash-free interleavers (i.e. permutations) [103], or clash-free parity check matri-

ces [102]. Similarly in our architecture, the connection pattern in a junction is

defined by an interleaver, i.e. a mapping from sequentially numbered edges on the

right to permuted numbering on the left. This leads to interleaved order access

of the left memory banks, and the possibility of clashes. We defined a simple

algorithm to prevent this from happening – start with a seed vector φi specifying

the left memory addresses to be accessed in cycle 0, then perform (φi + 1) %Di

for every subsequent cycle. This defines a certain left memory access pattern

for junction i, and can be visualized using the shaded left memories in Fig. 5.2.

Similar to connection patterns, we define Gmap
i and Gmap

net for the number of pos-

sible left memory access patterns in junction i and a complete NN, respectively

(i.e. Gmap
net =

∏L
i=1G

map
i).

When zi ≥ dini , which is expected to be true for practical cases of implementing

sparse NNs on powerful hardware devices, we state a result without formal proof:

Gcp
i is lower bounded by Gmap

i . Thus, for a given NN withNnet and dout
net and a given

hardware device with znet, Gmap
net is a measure of the number of possible pre-

defined sparse connection patterns which are clash-free and hardware

friendly.

For the case of zi < dini however, it could happen that Gcp
i < Gmap

i . In par-

ticular, a FC junction has only one possible connection pattern, as shown in Fig.

96

Figure 5.2: Repeating Fig. 4.3 for convenience.

5.1(a), but there can be many possible left memory access patterns. As an exam-

ple, consider the left memory access pattern for the FC junction in Fig. 4.4. Cycle

0 accesses left nodes {0, 1, 2, 3}, while cycle 1 accesses left nodes {4, 5, 6, 7}. These

can be switched to get a different clash-free left memory access pattern, but the

connection pattern would not change.

5.2.1 Types of memory access patterns

We refer to the seed vector technique discussed previously as Type 1 memory

accesses. This is recapitulated in Fig. 5.3(a). This approach only requires storing

97

the zi-dimensional seed vector φi, and uses zi incrementers to generate subsequent

addresses. We can compute Gmap
i as the number of possible ways of designing

φi, i.e. Gmap
i = Di

zi . This is the simplest and most hardware friendly method

for memory accesses we could come up with. However, if desired, there can be

other types of memory accessing which increase Gmap
i (and therefore Gmap

net and the

number of possible connection patterns) at the cost of more hardware. These are

discussed next.

In Type 2, a new seed vector φi is defined for every sweep. Considering the

example in Fig. 5.3(b), φi = (1, 0, 2, 2) for sweep 0, but (2, 0, 0, 0) for sweep

1. Since there are douti sweeps, there will be douti different φi vectors for each

junction. This results in Gmap
i = Di

zid
out
i . This approach requires storing douti

different φis, and uses zi incrementers to generate subsequent addresses. Our

hardware implementation (described in Section 4.7) used type 2 memory accesses.

The seed vectors for all sweeps were pre-generated and hard-coded into FPGA

logic.

In Type 3, the constraint of cyclically accessing the left memories is also

eliminated. Instead, any cycle can access any cell from each of the memories. This

means that storing φi is not enough, the entire sequence of memory accesses needs

to be stored as a matrix Φi ∈ {0, 1, · · · , Di − 1}Di×zi . In Fig. 5.3(c) for example,

Φi = ((1, 0, 2, 2), (0, 2, 1, 0), (2, 1, 0, 1)) for sweep 0. Every sweep would also have a

different Φi, resulting in Gmap
i = (Di!)

zid
out
i . Thus, this approach requires storing

98

Figure 5.3: (a-c) Various types of clash-free left memory access patterns, and (d) memory
dithering for Type 3, using the same left neuronal structure from Fig. 5.2 as an example.
The grids represent different access patterns for the same memory bank. The number in
each cell represents the left neuron number whose parameter is stored in that cell. Cells
sharing the same color are read in the same cycle.

douti different Φis, but removes the need for having zi incrementers to compute

subsequent addresses.

The most general kind of clash-freedom resulting in the biggest Gmap
i arises

from ignoring the effect of sweeps. We call this Type 4. This means that each

address in each left memory of junction i can be accessed in any cycle, as long as it

is accessed a total of douti times during the junction cycle (consisting of C = Did
out
i

cycles). However, this may lead to connectivity patterns where a pair of neurons

in adjacent layers have more than one connection between them, which is invalid

due to redundancy. Hence we skip the details, but state the resulting count of

possible NNs: Gmap
i =

(
C!

(douti !)
Di

)zi
.

A technique that can be applied to all the types of clash-freedom is mem-

ory dithering, which is a permutation of the zi memories (i.e. the columns) in a

99

bank. This permutation can change every sweep, as shown in Fig. 5.3(d). Memory

dithering incurs no additional incrementers, but incurs an additional storage cost

because of the zi permutation, which goes up to possibly douti different zi permu-

tations for Types 2 and 3. However, Gmap
i is increased by a factor Ki, as described

next.

• If dini /zi is an integer, an integral number of cycles are required to process

each right neuron. Since a cycle accesses all memories, dithering has no effect

and Ki = 1.

• If zi/dini is an integer greater than 1, the effects of dithering on connectivity

patterns are only observed when switching from one right neuron to the next

within a cycle. This results in

Ki =

 zi!

dini !
zi
din
i

douti

(5.4)

for Types 2 and 3, and the douti exponent is omitted for Type 1 since the

access pattern does not change across sweeps.

• When either of zi or dini does not perfectly divide the other, an exact value

of Ki is hard to arrive at since some proper or improper fraction of right

neurons are processed every cycle. In such cases, Ki is upper-bounded by

(z!)d
out
i .

100

Table 5.1: Comparison of Clash-free Left Memory Access Types and associated Hardware
Cost for a Single Junction i with (Ni−1, Ni, d

out
i , dini , zi) = (12, 12, 2, 2, 4)

Type
Memory

Ki Gmap
i

Cost to Compute Memory Addresses
Dithering Storage Incrementers

1
No N/A Di

zi = 81 zi = 4 zi = 4

Yes 6 KiDi
zi = 486 2zi = 8 zi = 4

2
No N/A Di

zid
out
i = 6561 zid

out
i = 8 zi = 4

Yes 36 KiDi
zid

out
i ≈ 236k 2zid

out
i = 16 zi = 4

3
No N/A (Di!)

zid
out
i ≈ 1.68M Ni−1d

out
i = 24 None

Yes 36 (Di!)
zid

out
i ≈ 60M (Ni−1 + zi) d

out
i = 32 None

Table 5.1 compares the count of possible left memory access patterns and asso-

ciated hardware cost for computing memory addresses for Types 1–3, with and

without memory dither. The junction used is the same as in Fig. 5.2, except Ni

is raised to 12 such that dini becomes 2 and allows us to better show the effects of

memory dithering. Ki is calculated as given in (5.4).

5.3 Comparison between classes of Pre-defined

Sparsity

At this point, the reader might be wondering about the performance of such clash-

free patterns. To study this, we group pre-defined sparsity into three classes in

order of least to most restrictive, or equivalently, from most to least number of

possible connection patterns, or equivalently, from ‘difficult to realize’ to ‘simple

to realize’ on our hardware architecture.

101

• Random, wherein connections are randomly distributed without regard for

fixed in- and out-degrees. Given Ni and Ni−1, a member of this class is

completely defined by ρi.

• Structured, which imposes the constraints of fixed in- and out-degrees. Given

Ni and Ni−1, a member of this class is completely defined by douti .

• Clash-free, which further imposes the constraint of clash-free memory access

patterns. Based on hardware friendliness, we can further expand clash-free

into subclasses – from type 3 with memory dithering to type 1 with no

memory dithering (i.e. the opposite order of Table 5.1). Given Ni and Ni−1,

a member of this class is completely defined by douti and zi.

Table 5.2 compares performance on different datasets for these three classes.

For the clash-free class, we chose the most restrictive Type 1 with no memory

dithering, and experimented with different znet settings to simulate different hard-

ware environments:

• Reuters: One junction cycle is 50 cycles for all the different densities. This is

because we scale znet accordingly, corresponding to a more powerful hardware

device being used for each NN as ρnet increases.

• CIFAR-100 and MNIST: These simulate cases where hardware choice is lim-

ited, such as a high-end, a mid-range and a low-end device being available.

Thus three different znet values are used for CIFAR depending on ρnet.

102

• TIMIT: We keep znet constant for different densities. Junction cycle length

varies from 90 cycles for ρnet = 7.69% to 810 for ρnet = 69.23%. This shows

that when limited to a single low-end hardware device, denser NNs can be

processed in longer time by simply changing znet.

Table 5.2 confirms that the most restrictive and hardware friendly clash-

free pre-defined sparse connection patterns do not lead to any statisti-

cally significant performance degradation. Thus, for most practical purposes,

one can opt for maximum hardware simplicity and design for Type 1 clash-freedom

with no memory dithering. For certain pathological cases of particularly small

junctions, one may opt for the other Types and incorporate memory dithering to

incorporate more flexibility in getting a particularly desired connection pattern.

Finally, we would like to mention that while clash-free connection patterns are

focused on ease of hardware implementation, they can also be good for software

implementation – e.g. the clash-free class could serve as the basis for pattern selec-

tion in software packages.

We also observed that random pre-defined sparsity performs poorly for very

low density networks, as shown by the blue values. This is possibly because there

is non-negligible probability of neurons getting completely disconnected, leading

to irrecoverable loss of information.

103

Table 5.2: Comparison of Pre-Defined Sparse Classes

dout
net ρnet(%) znet

Test Accuracy Performance (%)
Clash-free Structured Random

MNIST: Nnet = (800, 100, 100, 100, 10), FC test accuracy = (98± 0.1)%

(80, 80, 80, 10) 80.2 (200, 25, 25, 4) 97.9± 0.2 97.9± 0.2 97.8± 0.2
(60, 60, 60, 10) 60.4 (200, 25, 25, 4) 97.6± 0.1 97.8± 0.1 97.6± 0.2
(40, 40, 40, 10) 40.6 (200, 25, 25, 5) 97.5± 0.1 97.7 97.6± 0.1
(20, 20, 20, 10) 20.8 (200, 25, 25, 10) 97.2± 0.2 97.2± 0.1 97.1± 0.1
(10, 10, 10, 10) 10.9 (200, 25, 25, 25) 96.7± 0.1 96.8± 0.2 96.7± 0.2
(5, 10, 10, 10) 6.9 (100, 25, 25, 25) 96.3± 0.1 96.3± 0.1 96.2± 0.1
(2, 5, 5, 10) 3.6 (80, 25, 25, 50) 95± 0.2 95.1± 0.1 95± 0.3
(1, 2, 2, 10) 2.2 (80, 20, 20, 100) 93.3± 0.3 93.1± 0.5 92± 0.3

Reuters: Nnet = (2000, 50, 50), FC test accuracy = (89.6± 0.1)%

(25, 25) 50 (1000, 25) 89.4± 0.1 89.3 89.4
(10, 10) 20 (400, 10) 87± 0.1 86.7± 0.1 86.5± 0.1
(5, 5) 10 (200, 5) 78.5± 0.5 78.2± 0.7 77.5± 0.6
(2, 2) 4 (80, 2) 53.3± 1.8 51.2± 1.7 46.8± 2.9
(1, 1) 2 (40, 1) 28.4± 2.4 28.7± 2.3 28± 1.9

TIMIT: Nnet = (39, 390, 39), FC test accuracy = (43.2± 0.2)%

(270, 27) 69.2

(13, 13)

43± 0.1 43 43± 0.1
(180, 18) 46.2 42.7± 0.1 42.8± 0.1 42.9± 0.1
(90, 9) 23.1 42.1± 0.1 42.5± 0.1 42.4± 0.1
(60, 6) 15.4 41.5± 0.1 41.8± 0.2 41.9± 0.1
(30, 3) 7.7 40.5± 0.2 40.1± 0.2 39.4± 0.8

CIFAR-100 a: Nnet = (4000, 500, 100), FC top-5 test accuracy = (87.1± 0.6)%

(100, 100) 22
(2000, 250)

87.5± 0.2 87.7± 0.2 87.4± 0.3
(29, 29) 6.4 86.8± 0.3 87.2± 0.5 87.1± 0.2
(12, 12) 2.6

(400, 50)
86.3± 0.2 86.5± 0.4 86.6± 0.4

(5, 5) 1.1 85.3± 0.5 85.5± 0.5 85.7± 0.3
(2, 2) 0.4

(80, 10)
84.1± 0.5 84.3± 0.3 83.8± 0.3

(1, 1) 0.2 83± 0.5 83.3± 0.4 81.7± 0.7

aFor CIFAR-100, given values ofNnet, doutnet , znet and ρnet are just for the MLP portion, which
follows convolution and pooling layers to form the complete NN, as described in Section 3.3.1.
Reported values are top-5 test accuracies obtained from training on the complete NN.

104

5.4 Comparison to other methods of sparsity

As we have seen, pre-defined sparsity is a method of complexity reduction ‘from the

get-go’, i.e. prior to training. It can be thought of as a preemptive method since

it is foresees that most NNs are over-parametrized, hence, most of the weights can

be absent from the start without appreciable performance loss. In this sense, pre-

defined sparsity should not be compared on an apples-to-apples basis

with methods which train the complete FC NN and then reduce com-

plexity based on training results. Nevertheless, for the purposes of thorough-

ness, our previous work [25] compared our method of pre-defined sparsity with the

most restrictive Type 1 clash freedom against two other methods of sparsifying

NNs.

This comparison and the consequent results were achieved by Kuan-Wen

Huang, hence are not presented in this dissertation. We state the primary con-

clusion – even though clash-free patterns are highly structured and pre-defined,

there is no significant performance degradation when compared to advanced meth-

ods for producing sparse models which exploit specific properties of the dataset or

learn sparse patterns during training. In fact, the performance of our method is

comparable to FC NNs at most values of ρnet. The reader is encouraged to refer

to Section V of [25] for details.

105

5.5 Metrics for Connection Patterns

This section discusses possible methods and metrics to judge the ‘goodness’ of

a connection pattern before training a NN and computing inference accuracies.

These methods can be helpful in filtering out bad connection patterns without

incurring the time and computational expense of training. We will use the concept

of biadjacency matrices introduced earlier in Section 5.1.

Biadjacency matrices for individual junctions can be multiplied to yield the

effective connection pattern for an equivalent junction spanning any two junc-

tions x and y, i.e. Bx:y
Ny×Nx−1

=
∏x

i=y Bi, where element B(j,k)
x:y denotes the number of

paths from the kth neuron in layer x− 1 to the jth neuron in layer y. Thus, these

elements are integers ≥ 0. For the special case where x = 1 and y = L, we obtain

the input-output biadjacency matrix B1:L, i.e. the equivalent junction is the whole

NN. Each element of B1:L is the number of paths from a certain input neuron to

a certain output neuron.

As an example, consider the NN with Nnet = (6, 4, 2) shown in Fig. 5.4(a).

The input-output biadjacency matrix is B1:2 = B2B1, the equivalent out-degree is

dout1:2 = dout1 dout2 = 2, and equivalent in-degree is din1:2 = din1 d
in
2 = 6. The equivalent

input-output junction 1 : 2 is shown in Fig. 5.4(b). Note how the equivalent

biadjacency matrix has double connections between some pairs of neurons. This

indicates that there are multiple paths connecting certain inputs to certain outputs.

106

Figure 5.4: (a) Biadjacency matrices for a NN with Nnet = (6, 4, 2), doutnet = (2, 1),
dinnet = (3, 2). (b) Equivalent input-output junction and its biadjacency matrix. Double
lines indicate double connections between the same pair of neurons.

Note that an equivalent junction is only an abstract concept that aids visu-

alizing how neurons connect across junctions. The reader should not mistake it

for an actual junction; such an understanding would be incorrect because it would

ignore the effects of the non-linearity in the hidden layer. However, constructing

equivalent junctions is helpful in formalizing some metrics for connection patterns,

as will be discussed in the remainder of this section.

5.5.1 Window biadjacency matrices

We now attempt to characterize the quality of a pre-defined sparse connection

pattern, i.e. we try to find the best possible way to connect neurons to optimize

107

Figure 5.5: (a–b) Images can be divided into 2D windows corresponding to width and
height at the output of the input layer of a NN. For example, a 28 × 28 MNIST image
can be divided into (a) 16 windows of size 7 × 7 each, or (b) 4 windows of size 14 × 14
each. (c) Example of a 3D window where there is a 3rd dimension for depth, such as
color images like CIFAR, or the output of a convolutional layer.

performance. As indicated in Chapter 3, one reason behind the success of pre-

defined sparsity is that there exists redundancy / correlated information in typical

NN problems. Intuitively, we assume that left neurons of a junction can be grouped

into windows depending on the dimensionality of the left layer output. For

example, the input layer for a NN training on MNIST would have 2D windows,

each of which might correspond to a fraction of the image, as shown in Fig. 5.5(a–

b). When outputs from a NN have an additional depth dimension, such as color

channels in CIFAR, each window is a cuboid capturing fractions of width, height

and depth, as shown in Fig. 5.5(c).

The idea behind constructing windows is that neurons in a layer should get

information from all portions of the entity its adjacent layer is attempting to rep-

resent. Thus, we will try to maximize the number of left windows to which each

108

right neuron connects. To realize the importance of this, consider the MNIST

output neuron representing digit 2. Let’s say the sparse connection pattern is

such that when the connections to output 3 are traced back to the input layer,

they all come from the top half of the image. This would be undesirable since

the top half of an image of a 2 can be mistaken for a 3, as in Fig. 5.5(a–b).

A good pre-defined sparse connection pattern will try to avoid such scenarios by

spreading the connections to any right neuron across as many input windows as

possible. The problem can also be mirrored so that every left neuron connects to

as many different right windows as possible. This ensures that local information

from left neurons is spread to different parts of the right layer. The grouping of

right windows will depend on the dimensionality of the input to the right layer.

The window size is chosen to be the minimum possible such that the ideal num-

ber of connections from or to it remains integral. In order to achieve the minimum

window size, we let the number of left windows be dini and the number of right win-

dows be douti . So the number of neurons in each left and right window is Ni−1/d
in
i

and Ni/d
out
i , respectively. The example from Fig. 5.4 is reproduced in Fig. 5.6.

For example, since din1 = 3, the inputs must be grouped into 3 windows of size 2 so

that ideally one connection from each reaches every hidden neuron. The 1st and

3rd hidden neurons achieve this and are colored green, while the other two do not

and are colored red.

109

Figure 5.6: Window biadjacency matrices and scatter (to be discussed in Section 5.5.2)
for the NN in Fig. 5.4. Green neurons indicate ideal connectivity. The hidden layer is
split into two parts to show separate constructions of Bf

1 and Bb
2 . (a) shows the complete

NN, while (b) shows the equivalent input-output junction 1 : 2. The final scatter value
S is bolded within the scatter vector Snet.

Then we construct the forward window biadjacency matrix Bf
i

Ni×dini

and backward

window biadjacency matrix Bb
i

douti ×Ni−1
by summing up entries of Bi as shown in Fig.

5.7. These window biadjacency matrices describe connectivity between windows

in a layer and neurons on the opposite side of the junction. Forward indicates

windows on the left to neurons on the right, and vice-versa for backward. Ideally,

every window biadjacency matrix for a single junction should be the all 1s matrix,

which signifies exactly 1 connection from every window to every neuron on the

opposite side.

110

Figure 5.7: Constructing window biadjacency matrices for junction 1 of the NN in Fig.
5.4(a). The forward window biadjacency matrix Bf

1 is constructed by summing (Σ) across
din1 = 3 windows of each row of B1, each window is of size N0/d

in
1 = 2. The backward

window biadjacency matrix Bb
1 is constructed by summing (Σ) down dout1 = 2 windows

of each column of B1, each window is of size N1/d
out
1 = 2.

Note that these matrices can also be constructed for equivalent junctions,

i.e. Bf
x:y and Bb

x:y, by multiplying matrices for individual junctions. It could hap-

pen that the effective dinx:y for layer y becomes more than Nx−1, or the effective doutx:y

for layer x−1 becomes more than Ny. In such cases, the number of neurons in each

window is rounded up to 1. This scenario signifies that there are multiple paths

connecting neurons in the equivalent junction, i.e. Bf
x:y and/or Bb

x:y have entries

greater than 1. In such cases, a good connection pattern should try to distribute

the connections as evenly as possible. as quantified in Section 5.5.2.

5.5.2 Scatter

We propose scatter S as a proxy for the goodness of a pre-defined sparse MLP

connection pattern. In other words, it can be useful in predicting NN performance

111

before training. To compute scatter, we count the number of entries greater than or

equal to 1 in the window biadjacency matrix. If a particular window gets more than

its fair share of connections to a neuron on the opposite side, then it is depriving

some other window from getting its fair share. This should not be encouraged, so

we treat entries greater than 1 the same as 1. Scatter is the average of the count,

i.e. for junction i:

Sf
i =

1

Nidini

Ni∑
j=1

dini∑
k=1

I
(
Bf
i

(j,k) ≥ 1
)

(5.5a)

Sb
i =

1

douti Ni−1

douti∑
j=1

Ni−1∑
k=1

I
(
Bb
i

(j,k) ≥ 1
)

(5.5b)

The subscript and superscript notation for scatter is the same as the biadja-

cency matrices, i.e. f and b denote forward (left windows to right neurons) and

backward (right neurons to left windows), respectively. As an example, the NN

in Fig. 5.6(a) has Sf
1 = 10/12 = 0.83 since 10 out of the 12 elements in Bf

1 are

≥ 1. The other scatter values can be computed similarly to form the scatter vector

Snet =
(
Sf
1, S

b
1 , S

f
2, S

b
2 , S

f
1:2, S

b
1:2

)
. Notice that Snet will be all 1s for FC NNs, which

is the ideal case. Incorporating sparsity leads to reduced Snet values. Finally, we

define:

112

ä Definition 7: Scatter : Scatter is a measure of how well-distributed the

connections from neurons in any layer of a NN are to its adjacent layers. It is

measured as the minimum element in the scatter vector, i.e. :

S = minSnet (5.6)

In Fig. 5.6 for example, Snet = (0.83, 0.67, 0.5, 1, 0.67, 0.67), so S = 0.5 (shown

in bold). Our experiments indicate that any low value in Snet leads to bad perfor-

mance, so we picked the critical minimum value. These experiments are described

next.

Experimental Results on Scatter

We ran experiments to evaluate scatter using structured pre-defined sparse (non-

clash-free) NNs training on three datasets: a) Morse code symbol recognition,

b) MNIST, and c) CIFAR-10 images. (a) will be described in Chapter 6, while

(c) has the same image format as CIFAR-100, but 10 classes instead of 100 (see

Section 3.3.1 for more details on MNIST and CIFAR). The reader is encouraged

to refer to our previous work [26] for complete details on the network and training

configuration. We skip those details here and focus on the results instead. These

are shown in Fig. 5.8, which plots classification performance on validation data

vs. scatter S. Subfigures (a–b) show that performance gets better with increasing

scatter. Subfigure (c) does not show the trend clearly, we hypothesize that this is

113

Figure 5.8: Performance vs. scatter for structured pre-defined sparse (non-clash-free)
NNs training on (a) Morse (b) MNIST, and (c) CIFAR-10, part of which is convolutional.
All minimum values that need to be considered to differentiate between connection pat-
terns are bolded.

due to using convolution layers in the NN for CIFAR-10, leading to reduced impact

of the MLP portion.

Snet is shown alongside each point. When S is equal for different connection

patterns, the next minimum value in Snet needs to be considered to differentiate

the networks, and so on. Considering the Morse results, the leftmost three points

all have S = 1/8, but the number of occurrences of 1/8 in Snet is 3 for the lowest

point (8% accuracy), 2 for the second lowest (12% accuracy) and 1 for the highest

point (46% accuracy). For the MNIST results, both the leftmost points have a

single minimum value of 1/16 in Snet, but the lower has two occurrences of 1/4 while

the upper has one.

We draw several insights from these results. Firstly, although we defined S as

a single value for convenience, there may arise cases when other (non-minimum)

114

elements in Snet are important. Secondly, our results indicate that scatter is a

sufficient metric for performance, not necessary. In other words, a network with

a high S value should perform well, but a network with a slightly lower S value

than another cannot be conclusively dismissed as being worse. But if a network

has multiple low values in Snet, it should be rejected. Finally, carefully choosing

which neurons to group in a window will increase the predictive power of scatter.

A priori knowledge of the dataset will lead to better window choices.

The rightmost point in each subfigure of Fig. 5.8 corresponds to structured

pre-defined sparsity as we have described so far, i.e. the only constraints are fixed

in- and out-degree. To be more specific, the connections can arrange themselves

in any way they want as long as these constraints are obeyed. On the other hand,

all other points were generated by specifically planning individual connections,

i.e. designing the complete biadjacency matrices manually. These perform poorly

because when we designed a particular junction to have high values in Snet, it

invariably led to low values for another junction, leading to a low value for the

final S. This explains why the unplanned patterns perform the best.

Note that our experiments on scatter are not as exhaustive as those performed

to discover trends and guidelines in pre-defined sparsity – as detailed in Section 3.3

– which also help in indicating how well a pre-defined sparse NN can be expected

to perform. Nevertheless, our research group has plans to develop scatter and

115

other NN performance-predicting metrics further with a view towards applications

in automated machine learning – a topic described in Chapter 7.

5.6 Summary

This chapter explored different methods of connectivity in sparse NNs. In particu-

lar, we demonstrated that imposing hardware-friendly restrictions on sparsity does

not lead to performance loss, and developed metrics to characterize the ‘goodness’

of a sparse NN. This concludes the primary discussions on sparsity. The remainder

of this dissertation will discuss our other contributions.

116

Chapter 6

Dataset Engineering

Thus far, this document has discussed methods and architectures for complexity

reduction of neural networks primarily aimed towards classification problems. An

underlying assumption was that there is a large amount of high quality labeled

data available to train and benchmark the performance of different NNs. The

effects of dataset size on network performance has been explored in [104], in par-

ticular, more data is beneficial in reducing overfitting and improving robustness

and generalization capabilities of NNs [105, 106]. However, it is often a challenge

to obtain adequate amounts of quality labeled data, and several entities [107–109]

have identified this as a bottleneck to pushing the frontiers of NN performance.

A possible solution is to obtain data by synthetic instead of natural means.

Synthetic data is generated using computer algorithms instead of being col-

lected from real-world scenarios. The advantages are that a) computer algorithms

can be tuned to mimic real-world settings to desired levels of accuracy, and b) a

theoretically unlimited amount of data can be generated by running the algorithm

long enough. Synthetic data has been successfully used in problems such as 3D

117

imaging [110], point tracking [111], breaking Captchas on popular websites [112],

and augmenting real world datasets [113].

We conducted some investigations on synthetic data with the underlying motive

of creating several low-redundancy datasets, i.e. which would challenge a

pre-defined sparse NN more than datasets with considerable redundancy such as

discussed in Section 3.3.2. We came up with a family of synthetic datasets on

classifying Morse codewords. Morse code is a system of communication where

each letter, number or symbol in a language is represented using a sequence of dots

and dashes, separated by spaces. It is widely used to communicate in situations

where voice is not possible, such as helping people with disabilities talk [114–116],

or where message transmission needs to be achieved using only 2 states [117], or in

rehabilitation and education [118]. Morse code is a useful skill to learn and there

exist cellphone apps designed to train people in its usage [119,120].

Our classification problem groups Morse codewords into 64 character classes

comprising letters, numbers and symbols. This is different from previous works

with just two classes for dots and dashes [114,115,117], and other approaches using

fuzzy logic [117], time series to decode English words in Morse code [121, 122], or

radial basis functions [123]. We also investigated metrics to characterize the

difficulty of a dataset. In summary, we refer to our efforts discussed in this

chapter as dataset engineering. We published these efforts in [32], which won a

118

‘Conference Best Paper’ award. The codebase is available on Github [33]. The

key contributions are as follows:

Contributions in dataset engineering

1. To the best of our knowledge, we are the first to develop an algo-

rithm for generating machine learning datasets of varying difficulty –

measured as test set classification accuracy of a NN training on it.

Harder datasets lead to lower accuracy, and vice-versa. Encounter-

ing harder datasets leads to aggressive exploration of hyperparameters

and learning algorithms, which ultimately increases the robustness of

NNs training on them. Some particularly hard datasets are useful for

testing the limits of our sparse NNs.

2. We introduce metrics to quantify the difficulty of a dataset before hav-

ing a NN train on them. While some of these arise from information

theory, we also come up with a new metric which achieves a high cor-

relation coefficient with the eventual accuracy obtained after training

and inference.

3. This work is one of few to introduce a spatially 1-dimensional dataset.

This is in contrast to the wide array of image and character recognition

datasets which are usually 2D such as MNIST, where each image has

width and height, or 3D such as CIFAR, where each image has width,

119

height and depth (color channels). The dimensionality of the inputs is

important when benchmarking pre-defined sparse connection patterns,

since some of the metrics discussed in Chapter 5 depend on dimension.

6.1 Generating Algorithm

We picked 64 class labels for our dataset – the 26 English letters, the 10 Arabic

numerals, and 28 other symbols such as (, +, :, etc. Each of these is represented

by a sequence of dots and dashes in Morse code, for example, + is represented as

• — • — •. So as to mimic a real-world scenario in our algorithm, we imagined

a human or a Morse code machine writing out this sequence within a frame of

fixed size. Wherever the pen or electronic instrument touches is darkened and has

a high intensity, indicating the presence of dots and dashes, while the other parts

are left blank, i.e. spaces.

Step 1 – Frame Partitioning

For our algorithm, each Morse codeword lies in a frame which is a vector of 64

values, i.e. 64 features per input. Within the frame, the length of a sequence

having consecutive similar values is used to differentiate between a dot and a dash.

In the baseline dataset, a dot can be 1-3 values wide and a dash 4-9. This is

in accordance with international Morse code regulations [124] where the size or

120

duration of a dash is around three times that of a dot. The space between a dot

and a dash can have a length of 1-3 values. The exact length of a dot, dash or

space is chosen from these ranges according to a uniform probability distribution.

This is to mimic the human writer who is not expected to make each symbol have

a consistent length, but can be expected to make dots and spaces around the same

size, and dashes longer than them. The baseline dataset has no leading spaces

before the 1st dot or dash, i.e. the codeword starts from the left edge of the frame.

There are trailing spaces to fill up the right side of the frame after all the dots and

dashes are complete.

Step 2 – Assigning Values for Intensity Levels

All values in the frame are initially real numbers in the range [0, 16] and indicate

the intensity of that point in the frame. For dots and dashes, the values are drawn

from a normal distribution with mean µ = 12 and standard deviation σ = 4/3. The

idea is to have the ‘six-sigma’ range from (12− 3× 4/3) = 8 to (12 + 3× 4/3) = 16.

This ensures that any value making up a dot or a dash will lie in the upper half

of possible values, i.e. in the range [8, 16]. The value of a space is exactly 0. Once

again, these conditions mimic the human or machine writer who is not expected

to have consistent intensity for every dot and dash, but can be expected to not let

the writing instrument touch portions of the frame which are spaces.

121

Step 3 – Noising

Noise in input samples is often deliberately injected as a means of avoiding overfit-

ting in NNs [105], and has been shown to be superior to other methods of avoiding

overfitting [125]. This was, however, the secondary reason behind our experiment-

ing with noise. The primary reason was to deliberately make the data hard to

classify and test the limits of different NNs processing it. Noise can be thought of

as a human accidentally varying the intensity of writing the Morse codeword, or

a Morse communication channel having noise. The baseline dataset has no noise,

while others have additive noise from a mean-zero normal distribution applied to

them. Fig. 6.1 shows the 3 steps up to this point. Finally, all the values are

normalized to lie within the range [0, 1] with precision of 3 decimal places.

Step 4 – Mass Generation

Steps 1-3 describe the generation of one input sample corresponding to some par-

ticular class label. This can be repeated as many times as required for

each of the 64 class labels. This demonstrates a key advantage of synthetic

over real-world data – the ability to generate an arbitrary amount of data having

an arbitrary prior probability distribution over its classes. The baseline dataset

has 7000 examples for each class, for a total of 448,000 examples.

122

Figure 6.1: Generating the Morse codeword • — • — • corresponding to the+ symbol.
The first 3 steps, prior to normalizing, are shown. Only integer values are shown for
convenience, however, the values can and generally will be fractional. Normal(µ, σ)
denotes a normal distribution with mean = µ, standard deviation = σ. For this figure,
σ = 1.

6.1.1 Variations and Difficulty Scaling

The baseline dataset is as described so far, except that σ = 0, i.e. it has no additive

noise. We experimented with the following variations in datasets:

1. Baseline with additive noise = Normal(0, σ), σ ∈ {0, 1, 2, 3, 4}. These are

called Morse 1.σ, i.e. 1.0 to 1.4, where 1.0 is the baseline.

123

2. Instead of having the codeword start from the left edge of the frame, we

introduced a random number of leading spaces. For example, in Fig. 6.1,

the codeword occupies a length of 26 values. The remaining 38 space values

can be randomly divided between leading and trailing spaces. This increases

the difficulty of the dataset since no particular set of neurons are expected

to be learning dots and dashes as the actual codeword could be anywhere

in the frame. Just like variation 1, we added noise and call these datasets

Morse 2.σ, σ ∈ {0, 1, 2, 3, 4}.

3. There is no overlap between the lengths of dots and dashes in the datasets

described so far. The difficulty can be increased by making dash length

= 3-9 values, which is exactly according to the convention of having dash

length thrice of dot length. This means that dashes can masquerade as dots

and spaces, and vice-versa. This is done on top of introducing leading spaces.

These datasets are called Morse 3.σ, σ being as before.

4. The Morse datasets only have 64 input features, which is quite small com-

pared to some others such as MNIST (784 features) or CIFAR (3072 features).

To decrease dataset difficulty, we introduced dilation by a factor of 4. This

is done by scaling all lengths in variation 3 by a factor of 4, i.e. frame length

(number of features) becomes 256, dot sizes and space sizes are 4-12, and

dash size is 12-36. These datasets are called Morse 4.σ, σ being as before.

124

5. Increasing the number of training examples, i.e. the size of the dataset,

makes it easier to classify since a NN has more labeled training examples to

learn from. Accordingly we chose Morse 3.1 and scaled the number of exam-

ples to obtain Morse Size x, x ∈ {1/8, 1/4, 1/2, 2, 4, 8}. For example, Morse

Size 1/2 has 3500 examples for each class, for a total of 224,000 examples.

6.2 Neural Network Results and Analysis

6.2.1 Results

We initially designed a FC MLP NN to benchmark the different variations of the

Morse datasets. N0 always matches the frame length, i.e. 256 for the Morse 4.σ

datasets and 64 for all others, while NL = 64 to match the number of classes. We

used a single hidden layer with 1024 neurons, i.e. Nnet = (256, 1024, 64) for Morse

4.σ andNnet = (64, 1024, 64) for all other datasets. The performance, i.e. accuracy,

generally increases on adding more hidden neurons, however, we stuck with 1024

since values above that yielded diminishing returns. The hidden layer has ReLU

activations, while the output is a softmax probability distribution. We used the

Adam optimizer with default parameters, He normal initialization for the weights,

and trained for 30 epochs using a minibatch size M = 128. We used 5/7th of the

total examples for training, and 1/7th each for validation and testing. All reported

accuracies are those obtained on the test samples unless otherwise mentioned.

125

Figure 6.2: Percentage classification accuracies obtained by the FC NN (described in
Section 6.2.1) on the test set of different Morse datasets. The rightmost set of bars
corresponds to Morse 4.σ with L2 regularization with λ = 10−5.

Validation results suggested that no regularization was required when training

on Morse 1.σ, 2.σ and 3.σ. However, the NN for Morse 4.σ is more prone to

overfitting due to having more input neurons, leading to more weight parameters.

Accordingly we applied L2 regularization with λ = 10−5, which was the best value

as determined from validation.

Test accuracy results after training the NN on the different Morse datasets are

shown in Fig. 6.2. As expected, increasing the standard deviation of noise results

in drop in performance. This effect is not felt strongly when σ = 1 since the 3σ

range can take spaces to a value of 3 (on a scale of [0, 16], i.e. before normalizing

to [0, 1]), while dots and dashes can drop to 8−3 = 5, so the probability of a space

being confused with a dot or dash is basically 0. Confusion can occur for σ ≥ 2,

and gets worse for higher values, as shown in Fig. 6.3.

126

Figure 6.3: Effects of noise leading to spaces (orange) getting confused (brown) with
dots and dashes (blue). Higher values of noise σ lead to increased probability of the
brown region, making it harder for the NN to discern between ‘dots and dashes’ and
spaces. The x-axis in each plot shows values in the range [0, 16], i.e. before normalizing
to [0, 1].

Since the codeword lengths do not often stretch beyond 32, the first half of

neurons usually encounter high input intensity values corresponding to dots and

dashes during training. This means that the latter half of neurons mostly encounter

lower input values corresponding to spaces. This aspect changes when introducing

leading spaces, which become inputs to some neurons in the first half. The result

127

Figure 6.4: Effects of increasing the size of Morse 3.1 by a factor of x on test accuracy
after 30 epochs (blue), and (Training Accuracy− Test Accuracy) after 30 epochs (orange).

is an increase in the variance of the input to each neuron. As a result, accuracy

drops. The degradation is worse when dashes can have a length of 3-9. Since

the lengths are drawn from a uniform distribution, 1/7th of dashes can now be

confused with 1/3rd of dots and 1/3rd of intermediate spaces. As an example, for

the + codeword which has 2 dashes, 3 dots and 4 intermediate spaces, there is a

(2/9× 1/7 + 3/9× 1/3 + 4/9× 1/3) = 29% chance of this confusion occurring. Dilating

by 4, however, reduces this chance to (2/9× 1/25 + 3/9× 1/9 + 4/9× 1/9) = 9.5%.

Accuracy is better as a result.

Increasing dataset size has a beneficial effect on performance. Giving the NN

more examples to train from is akin to training on a smaller dataset for more

128

epochs, with the important added advantage that overfitting is reduced. This is

shown in Fig. 6.4, which shows improving test accuracy as the dataset is made

larger. At the same time, the difference between final training accuracy and test

accuracy reduces, which implies that the network is generalizing better and not

overfitting. Note thatMorse Size 8 has 3 million labeled training examples – a ben-

eficial consequence of being able to cheaply generate large quantities of synthetic

data.

6.2.2 Results for Pre-Defined Sparse Networks

Fig. 6.5 shows classification performance for 4 different Morse datasets when using

our method of structured pre-defined sparse NNs. Both junctions are sparsified

equally. Note how the baseline dataset only has mild performance degradation even

when ρnet is reduced to 1/4, while performance drops off much more rapidly when

dataset variations are introduced. These variations lead to increased information

content per neuron, i.e. reduced redundancy. This enforces the trend observed in

Section 3.3.2 of reduced redundancy datasets being less robust to sparsification.

Also note that as density is reduced, Morse 4.2 has the best performance out

of the non-baseline models tested in Fig. 6.5. This is because it has more weights

to begin with, due to the increased number of input neurons. For example, the

performance at ρnet = 1/4 for Morse 4.2 is better than FC for Morse 2.1. This

enforces the trend of ‘large and sparse’ NNs performing better than ‘small and

129

Figure 6.5: Effects of imposing pre-defined sparsity on classification performance for
different Morse datasets.

dense’ NNs, as discussed in Section 3.3.4. However, there is a subtle difference,

while Section 3.3.4 experimented on varying numbers of hidden neurons, here it is

the number of input neurons which varies.

We also experimented with the trend of latter junctions requiring a higher den-

sity than former, as discussed in Section 3.3.3, on the dataset Morse 1.0. Similar

to the case of Nnet = (39, 390, 39) for TIMIT, the NN used for Morse code has

symmetric junctions since Nnet = (64, 1024, 64). We set up the experiment some-

what differently than TIMIT. We swept over several possible (ρ1, ρ2) value pairs

such that they all led to the same ρnet value. We did this for two different ρnet

values – 25% in Fig. 6.6(a) and 50% in Fig. 6.6(b), and plot the peak validation

accuracy obtained in 30 epochs. The black dashed line is for the case ρ1 = ρ2, and

130

Figure 6.6: Validation performance results for varying ρ1 (x-axis top) and ρ2 (x-axis
bottom) individually so as to keep ρnet fixed at (a) 25%, (b) 50%. The black dashed
line is when ρ1 = ρ2, while the red circles indicate peak performance. The NN has
Nnet = (64, 1024, 64) and dataset used is Morse 1.0.

should be the point where the performance peaks provided both junctions have

equal importance. The fact that performance peaks to the left of the black dashed

line for both figures (red circles) indicates that a higher value for ρ2 is beneficial, as

indicated by the tend in Section 3.3.3. For example when ρnet = 50%, performance

peaks at (ρ1, ρ2) = (25%, 75%). Also note that points to the extreme left and right

go lower than the critical density for junctions 1 and 2, respectively.

6.3 Metrics for Dataset Difficulty

This section discusses possible metrics for quantifying how difficult a dataset is

to classify. Each sample in a dataset is a point in an N0-dimensional space. For

131

the Morse datasets (not considering dilation), N0 = 64. There are NL classes of

points, which is also 64 in this case. The classification problem is essentially finding

the class of any new point. Any machine learning classifier will attempt to learn

and construct decision boundaries between the classes by partitioning the whole

space into NL regions. The samples of a particular class m are clustered in the

mth region. Suppose a particular input sample actually belongs to class m. The

classifier commits an error if it ranks some class j, j 6= m, higher than m when

deciding where that input sample belongs. The probability of this happening is

PPW (j|m), where subscript PW stands for pairwise and indicates that the quantity

is specific to classes j and m. The overall probability of error P (E) would also

depend on the prior probability P (m) of the mth class occurring. Considering all

classes in the dataset, P (E) is given as:

NL∑
m=1

P (m)

 max
j∈{1,2,··· ,NL}

j 6=m

PPW (j|m)

 ≤ P (E) ≤
NL∑
m=1

P (m)

NL∑
j=1
j 6=m

PPW (j|m) (6.1)

This is a standard result in decision theory, cf. [126].

The pairwise probabilities can be approximately computed by assuming that

the locations of samples of a particular class m are from a Gaussian distribution

with mean located at the centroid cm, which is the average of all samples for the

class. To simplify the math, we take the average variance across all N0 dimensions

within a class – this gives the variance σ2
m for class m. The distance between 2

132

classes m and j is the L2-norm of the displacement vector between their centroids,

i.e. d(m, j) = ‖cm − cj‖2. A particular class will be more prone to errors if it is

close to other classes. This can be quantified by looking at
dmin(m)

σm
, where the

numerator is given as:

dmin(m) = min
j∈{1,2,··· ,NL}

j 6=m

d(m, j) (6.2)

With the Gaussian assumption, (6.1) simplifies to Vlower ≤ P (E) ≤ Vupper,

where:

Vlower =

NL∑
m=1

P (m)Q

√dmin(m)2

4σm2

 (6.3a)

Vupper =

NL∑
m=1

P (m)

NL∑
j=1
j 6=m

Q

√d(m, j)2

4σm2

 (6.3b)

where Q(.) is the tail function for a standard Gaussian distribution. See [126] for

a further exposition of these concepts.

The lower and upper bounds for error Vlower and Vupper can thus be used as

metrics for dataset difficulty, since higher values for them imply higher probabilities

of error, i.e. lower accuracy. A simpler metric can be obtained by just considering

σm
dmin(m)

. Higher values for this indicate that a) class m is close to some other class

and the NN will have a hard time differentiating between them, and b) Variance

of class m is high, so it is harder to form a decision boundary to separate inputs

133

having labels m from those with other labels. Since
σm

dmin(m)
is different for every

class, we experimented with ways to reduce it to a single measure such as taking

the minimum, the average and the median. The average worked best, which gives

our 3rd metric, which we call the distance metric Vdist:

Vdist =

∑NL

m=1
σm

dmin(m)

NL

(6.4)

Therefore, high values of Vdist lead to low accuracy.

The 4th and final metric is the threshold metric Vthresh, which we came up

with. To obtain this, we first compute the class centroids just as before. Then we

compute the L1-norm between every pair of centroids and average over N0, i.e. :

d1(m, j) =
‖cm − cj‖1

N0

(6.5)

Since all N0 features in each input sample are normalized to [0, 1], all the elements

in all the centroid vectors also lie in the range [0, 1]. So the d1 number for every

pair of classes is always between 0 and 1, in fact, it is proportional to the absolute

distance between the 2 classes. Then, we simply count how many of the d1 numbers

are less than a threshold, which we empirically set to 0.05. This gives Vthresh, i.e. :

Vthresh =

NL∑
m=1

NL∑
j=1
j 6=m

I (d1(m, j) < 0.05) (6.6)

134

Table 6.1: Correlation coefficients between metrics and accuracy

Metric r

Vlower -0.59

Vupper -0.64

Vdist -0.63

Vthresh -0.64

The higher the value of Vthresh, the lower the accuracy. Note that the total number

of d1 values will be
(
NL

2

)
, so the count for Vthresh will typically be higher for datasets

that have more classes. This is a desired property since more number of classes

usually makes a dataset harder to classify. Note that the maximum value of Vthresh

for the Morse datasets is
(
64
2

)
= 2016.

6.3.1 Goodness of the Metrics

We computed Vlower, Vupper, Vdist and Vthresh values for all the Morse datasets and

plotted these with the test set classification accuracy results obtained from the

FC NN in Section 6.2.1. The results are shown in Fig. 6.7, while the Pearson

correlation coefficient r of each metric with the accuracy is given in Table 6.1.

Note that the metrics are an indicator of dataset difficulty, so they are negatively

correlated with accuracy. It is apparent that the Vupper and Vthresh metrics are the

best since their r values have the highest magnitude.

135

Figure 6.7: Plotting each metric for dataset difficulty vs. percentage accuracy obtained
for datasets Morse 1.σ (blue), 2.σ (red), 3.σ (green) and 4.σ (black). The accuracy results
are using the FC NN, as reported in Section 6.2.1. Color coding is just for clarity, the r
values in Table 6.1 take into account all the points regardless of color.

6.3.2 Limitations of the Metrics

As mentioned, each class has a single variance value which is the average variance

across dimensions. This is a reasonable simplification to make because our exper-

iments indicate that the variance of the variance values for different dimensions is

small. However, this simplification possibly leads to the error bounds Vlower and

Vupper not being sufficiently tight. A possible improvement, involving significantly

136

more computation, would be to compute the N0 × N0 covariance matrix Km for

each class.

It is worthwhile noting that all these metrics are a function of the dataset

only and are independent of the machine learning algorithm or training

setup used. On the other hand, percentage accuracy depends on the learning

algorithm and training conditions. As shown in Fig. 6.4, increasing dataset size

leads to accuracy improvement, i.e. the dataset becoming easier, since the NN has

more training examples to learn from. However, increasing dataset size drives all

the metric values towards indicating higher difficulty. This is because the occur-

rence of more examples in each class increases its standard deviation σm and also

makes samples of a particular class more scattered, leading to reduced values for d

and d1. We hypothesize that these shortcomings of the metrics are due to the fact

that most variations of the Morse datasets have low redundancy, while the metrics

(the error bounds in particular) are designed for high signal-to-noise ratio (SNR)

problems, i.e. high redundancy.

6.4 Summary

This chapter presented an algorithm to generate datasets of varying difficulty on

classifying Morse code symbols. While the results have been shown for NNs, any

machine learning algorithm can be tried and the challenge arising from more dif-

ficult datasets used to fine tune it. The datasets are synthetic and consequently

137

may not completely represent reality unless statistically verified with real-world

tests. However, the different aspects of the generating algorithm help to mimic

real-world scenarios which can suffer from noise or other inconsistencies. This

chapter highlights one of the biggest advantages of synthetic data – the ability to

easily produce large amounts of it and thereby improve the performance of learn-

ing algorithms. The given Morse datasets are also useful for testing the limits of

various learning algorithms and identifying when they fail or possibly overfit/un-

derfit. Finally, the metrics discussed, while not perfect, can be used to understand

the inherent difficulty of the classification problem on any dataset before applying

learning algorithms to it.

138

Chapter 7

Automated Machine Learning

This chapter discusses one of the major components of our research – automated

machine learning (AutoML) – where our efforts encompass both CNNs and MLPs.

In particular, we have developed an open-source framework to search for deep learn-

ing models balancing performance and complexity. We call it Deep-n-Cheap,

which can be found at https://github.com/souryadey/deep-n-cheap [31].

7.1 Motivation and Related Work

Manually designing NNs, particularly CNNs, is challenging since they typically

have a large number of interconnected layers and require a large number of deci-

sions to be made regarding hyperparameters. As discussed in Chapter 2, hyper-

parameters, as opposed to trainable parameters like weights and biases, are not

learned by the network. They need to be specified and adjusted by an external

entity, i.e. the designer. They can be broadly grouped into two categories – a)

architecture hyperparameters and training hyperparameters.

139

https://github.com/souryadey/deep-n-cheap

ä Definition 8: Architecture hyperparameters: Architecture hyperparam-

eters are the design choices concerned with the structure of NNs, including but

not limited to the number, type and connection patterns across layers.

ä Definition 9: Training hyperparameters: Training hyperparameters are

the design choices relevant to performing the processes of training and inference

in a NN, including but not limited to the initial learning rate and its scheduling,

weight decay coefficient, and batch size.

The difficulty of manually designing hyperparameters to find a good NN is

exacerbated by the fact that several hyperparameters interact with each other to

have a combined effect on the final performance. The problem of searching for

good NNs has resulted in several efforts towards automating this process. These

efforts include AutoML frameworks such as Auto-Keras [17], AutoGluon [18]

and Auto-PyTorch [19], which are open source software packages applicable to a

variety of tasks and types of NNs. The major focus of these efforts is on providing

user-friendly toolkits to search for good hyperparameter values.

Several other efforts place more emphasis on novel techniques for the search

process. These can be broadly grouped into Neural Architecture Search (NAS)

efforts such as [20, 21, 24, 127–133], and efforts that place a larger emphasis on

training hyperparameters over architecture [23,134–136]. An alternate grouping is

on the basis of search methodology – a) reinforcement learning, where a controller

NN is trained to optimize the search objective [20,129,137], b) evolution / genetic

140

operations, where a good NN architecture is selected using genetic operations such

as crossover and mutation [21, 130, 131], c) Bayesian Optimization [22, 134, 136,

138,139], and/or d) one-off techniques such as tree-structured algorithms [135,140],

the successive halving algorithm [23], and using hypernetworks [141]. Although the

efforts described in this paragraph often come with publicly available software, they

are typically not intended for general purpose use, e.g. the code release for [24] only

allows reproducing NNs on two datasets. This differentiates them from AutoML

frameworks.

As has been discussed in earlier chapters, deep NNs often suffer from complex-

ity bottlenecks – either in storage, quantified by the total number of trainable

parameters Np, or computational, such as the number of Floating Point Opera-

tions per Second (FLOPS) or the time taken to perform training and/or inference.

Prior efforts on NN search penalize inference complexity in specific ways – latency

in [24], FLOPS in [132], and both in [133]. However, inference complexity is sig-

nificantly different from training since the latter includes backpropagation and

parameter updates every batch. For example, the resulting network for CIFAR-10

in [24] takes a minute to perform inference, but hours to train. Moreover, while

there is considerable interest in popular benchmark datasets, in most real-world

applications deep learning models need to be trained on custom datasets for which

141

readymade, pre-trained models do not exist [142–144]. This leads to an increas-

ing number of resource-constrained devices needing to perform training on the fly,

e.g. self-driving cars.

The computing platform and software libraries being used are also important,

e.g. we found that changing batch size has a greater effect on training time per

epoch on GPU than Central Processing Unit (CPU). Therefore, calculating the

FLOP count is not always an accurate measure of the time and resources expended

in training a NN. Platform specificity also applies to our work on pre-defined spar-

sity, e.g. multiplying sparse matrices using the torch.sparse package from the

popular deep learning library Pytorch [145] does not generally lead to significant

reductions in time as compared to multiplying dense matrices, as explored for var-

ious platforms in [146,147]. Some other works attempting to reduce training time

are [148] and [149] – the latter focuses on finding the quickest training time to get

to a certain level of performance. However, all these efforts use manual methods,

not search frameworks. In summary, we therefore identify training complexity

reduction as one key goal for a NN search framework.

7.2 Overview of Deep-n-Cheap (DnC)

We have developed Deep-n-Cheap (DnC) – an open-source AutoML framework to

search for deep learning models. We specifically target the training complexity

bottleneck by including a penalty for training time per epoch ttr in our search

142

Figure 7.1: Deep-n-Cheap complete logo.

objective. The penalty coefficient can be varied by the user to obtain a family of

networks trading off performance and complexity. Additionally, we also support

storage complexity penalties for Np.

DnC searches for both architecture and training hyperparameters. While the

architecture search derives some ideas from literature, we have striven to offer the

user a considerable amount of customizability in specifying the search space. This

is important for training on custom datasets which can have significantly differ-

ent requirements than those associated with benchmark datasets. DnC primarily

uses Bayesian Optimization (BO) and currently supports classification tasks using

CNNs and MLPs.

Key features / contributions of our AutoML work

1. Complexity: To the best of our knowledge, DnC is the only AutoML

framework targeting training complexity reduction. We show results

on several datasets on both GPU and CPU. Our models achieve per-

formance comparable to state-of-the-art, with training times that are

143

1-2 orders of magnitude less than those for models obtained from other

AutoML and search efforts.

2. Usability: DnC offers a highly customizable three-stage search inter-

face for both architecture and training hyperparameters. As opposed

to Auto-Keras and AutoGluon, our search includes a) batch size that

affects training times, and b) architectures beyond pre-existing ones

found in literature. As a result, our target users include those who

want to train quickly on custom datasets. As an example, our frame-

work achieves the highest performance and lowest training times on

the Reuters RCV1 dataset, as described in 3.3.1.

3. Insights: We conduct investigations into the search process and draw

several insights that will help guide a deeper understanding of NNs

and search methodologies. A notable aspect is search transfer, where

we found that the best NNs obtained from searching over one dataset

give good performance on a different dataset. This helps to improve

generalization in NNs – such as on custom datasets – instead of purely

optimizing for specific problems. We also introduce a new similarity

measure for BO and a new distance function for NNs. We empirically

justify the value of our greedy three-stage search approach over less

144

Table 7.1: Comparison of Features of AutoML Frameworks

Framework Architecture search space
Training Adjust model
hyp search complexity

Auto-Keras Only pre-existing architectures No No
AutoGluon Only pre-existing architectures Yes No

Auto-PyTorch Customizable by user Yes No
Deep-n-Cheap Customizable by user Yes Penalize ttr, Np

greedy approaches, and the superiority of BO over random and grid

search.

The features of DnC compared to other AutoML frameworks are listed in Table

7.1. Further performance and complexity comparisons will be shown in Section 7.5.

7.3 Our Approach

Given a dataset, our framework searches for NN configurations through sequential

stages in multiple search spaces. Each configuration is trained for the same number

of epochs, e.g. 100. There have been works on extrapolating NN performance

from limited training [128, 150], however we train for a large number of epochs to

predict with significant confidence the final performance of a NN after convergence.

Configs are mapped to objective values using:

f(Config) = log (fp + wcfc) (7.1)

145

where wc controls the importance given to reducing complexity. The goal of the

search is to minimize f . Its components are:

Performance term: fp = 1− (Best Validation Accuracy) (7.2a)

Complexity term: fc =
c

c0
(7.2b)

where c is the complexity metric for the current configuration (either ttr or Np),

and c0 is a reference value for the same metric (typically obtained for a high com-

plexity configuration in the space). Lower values of wc focus more on performance,

i.e. improving accuracy. One key contribution of this work is characterizing higher

values of wc that lead to reduced complexity NNs that train fast – these also reduce

the search cost by speeding up the overall search process.

7.3.1 Three-stage search process

The search is divided into 3 stages, summarized in Fig. 7.2.

Stage 1 – Core architecture search

ä Definition 10: Core architecture: The core architecture of a NN is

defined as its depth and width. For CNNs, this is the number of convolutional

layers (depth) and the number of channels in each (width). For MLPs, this is the

number of hidden layers (depth) and the number of nodes in each (width).

146

Core architecture hyps
CNNs:
• num conv layers
• num channels

MLPs:
• num hidden layers
• num nodes

Advanced arch. hyps
CNNs:

1) Downsampling style
2) Batch normalization
3) Dropout
4) Shortcuts

MLPs:
1) Dropout

Training hyps
• Learning rate
• Weight decay
• Batch size

Searched using
Bayesian

optimization

Stage 1: Core
Architecture Search

Stage 2: Advanced
Architecture Search Final results

Stage 3: Training
Hyperparameter Search

Multiple grid
searches in
sequence

Fixed to
presets

Fixed to Stage
1 search results

Fixed to Stage
2 search results

Fixed to
presets

Fixed to
presets

Stage 1
search
results

Stage 2
search
results

Stage 3
search
results

Fixed to Stage
1 search results

Searched using
Bayesian

optimization

Figure 7.2: Three-stage search process for DnC.

The depth and width form the combined search space for Stage 1. Other archi-

tecture hyperparameters such as BN and dropout layers and all training hyper-

parameters are fixed to presets that we found to work well across a variety of

datasets and network depths. BO is used to minimize f and the corresponding

best configuration is the Stage 1 result.

Stage 2 – Advanced architecture search

ä Definition 11: Advanced architecture: The advanced architecture of

a NN is defined as the collection of all hyperparameters necessary to define the

architecture of the NN apart from its width and depth.

This stage starts from the resulting architecture from Stage 1 and uses grid

search to search for the following CNN hyperparameters through a sequence of

147

sub-stages – 1) whether to use strides or max pooling layers for downsampling,

2) amount of BN layers, 3) amount of dropout layers and drop probabilities, and

4) amount of shortcut connections, where each shortcut skips over 2 layers. This

is not a combined space, instead grid search first picks the downsampling choice

leading to the minimum f value, then freezes that and searches over BN, and so on.

This ordering yielded good empirical results, however, reordering is supported by

the framework. For MLPs, there is a single grid search for dropout probabilities.

Note that the list of advanced architecture hyperparameters is not exhaustive. As

in the previous stage, training hyperparameters are fixed to presets. The result

from Stage 2 is the result from the final sub-stage.

Some architecture hyperparameters in Stage 2 are mapped to a space of frac-

tions which indicate the fraction of convolutional layers to which the hyperparam-

eter is applied. For example, a BN fraction of half indicates every other convolu-

tional layer is followed by a BN layer. As another example, shortcut connections

can be applied after every other convolutional layer (fraction 1), or after every 4th

convolutional layer (fraction half). These examples are shown in Fig. 7.3.

Stage 3 – Training hyperparameter search

The architecture is finalized after Stage 2. In Stage 3 – identical for CNNs and

MLPs – we search over the combined space of initial learning rate η, weight decay

λ and batch size, using BO to minimize f . The result is combined with the

148

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Input

Output

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Input

Output

Conv

Conv

Conv

Input

Shortcuts = 0.5

BN

Conv
BN

Conv

Conv
BN

BN

Conv

Conv

Output

Shortcuts = 1 BN = 0.5

Figure 7.3: Left and Middle: Shortcut connections with fraction 1 and half, respectively.
Right : BN with fraction half. Convolutional layers are shown in blue, BN layers in orange,
and shortcut connections as black curved arrows.

architecture at the end of stage 2 to get the final configuration – comprising both

architecture and training hyperparameters.

Other hyperparameters

We recognize that there are other hyperparameters in NNs that have not been

explored in the present work, In particular, we keep activation function fixed to

ReLU, use He normal initialization for weights and a constant value of 0.1 to ini-

tialize biases, always apply global average pooling after the convolutional portion,

149

fix pool sizes to 2 × 2, kernel sizes to 3 × 3, and do not apply pre-defined spar-

sity. While the present release – Deep-n-Cheap v1.0 does not support searching

over these hyperparameters – these are excellent topics for future extensions to the

framework.

7.3.2 Bayesian Optimization

Bayesian Optimization is useful for optimizing functions that are black-box and/or

expensive to evaluate such as f , which requires NN training. Moreover, derivatives

of f do not exist since the search space is discrete, and f is non-convex and noisy.

These factors also combine to make BO an excellent choice.

The initial step when performing BO is to sample n1 configurations from

the search space, {x1, · · · ,xn1}, calculate their corresponding objective values,

{f (x1) , · · · , f (xn1)}, and form a Gaussian prior. The mean vector µ is filled with

the mean of the f values, and covariance matrix Σ is such that Σij = σ (xi,xj),

where σ(·, ·) is a kernel function that takes a high value ∈ [0, 1] if configurations

xi and xj are similar.

Then the algorithm continues for n2 steps, each step consisting of sampling n3

configurations, picking the configuration with the maximum acquisition function

value, computing its f value, and updating µ and Σ accordingly. Computing the

acquisition function is significantly faster than computing f , since the former does

150

not require training a NN. Note that BO explores a total of n1 +n2n3 states in the

search space, but the expensive f computation only occurs for n1 + n2 states.

The reader is referred to [151] for a complete tutorial on BO.

Similarity between NN configurations

We begin by defining the distance between values of a particular hyperparameter

k for two configurations xi and xj. Larger distances denote dissimilarity. We

initially considered the distance functions defined in Sections 2 and 3 of [152],

but then adopted an alternate one that resulted in similar performance with less

tuning. We call it the ramp distance:

d (xik, xjk) = ωk

(
|xik − xjk|
uk − lk

)rk
(7.3a)

where uk and lk are respectively the upper and lower bounds for k, ωk is a scaling

coefficient, and rk is a fractional power used for stretching small differences. Note

that d is 0 when xik = xjk, and reaches a maximum of ωk when they are the

furthest apart. xik and xjk are computed in different ways depending on k:

• If k is batch size or number of layers, xik and xjk are the actual values.

• If k is η or λ, xik and xjk are the logarithms of the actual values.

• When k is the hidden node configuration of a MLP, we sum the nodes

together across all hidden layers. This is because we found that the sum has

151

a greater impact on f than considering layers individually, e.g. a configura-

tion with three 300-node hidden layers has a closer f value to a configuration

with one 1000-node hidden layer than a configuration with three 100-node

hidden layers.

• When k is the convolutional channel configuration of a CNN, we calculate

individual distances for each layer. If the number of layers is different, the

distance is maximum for each of the extra layers, i.e. ω. This idea is inspired

from [152], as compared to alternative similarity measures in [17, 22]. We

follow this layer-by-layer comparison because our prior experiments showed

that the representations learned by a certain convolutional layer in a CNN

are similar to those learned by layers at the same depth in different CNNs.

Additionally, this approach performed better than the summing across layers

as in MLPs.

Each individual distance d (xik, xjk) is converted to its kernel value σ (xik, xjk)

using the squared exponential function, then we take their convex combination for

all K hyperparameters using coefficients {sk} to finally get σ (xi,xj). An example

is given in Fig. 7.4.

σ (xik, xjk) = exp

(
−d

2(xik, xjk)

2

)
(7.3b)

σ (xi,xj) =
K∑
k=1

skσ (xik, xjk) (7.3c)

152

50 channels

80 channels

36 channels

61 channels

107 channels

Min channels = 16
Max channels = 64
omega = 3, r = 1

Min channels = 16
Max channels = 128
omega = 3, r = 1/2

Min channels = 16
Max channels = 256
omega = 3, r = 1/3

Distance = 0.875
Kernel = 0.682

Distance = 1.236
Kernel = 0.466

Distance = 3 (i.e. max)
Kernel = 0.01 (i.e. min)

Config i Config j

Assuming all {s} are equal, final kernel value = 0.386

Pre-decided Computed

No 3rd layer

La
ye

r 1
La

ye
r 2

La
ye

r 3

Figure 7.4: Calculating Stage 1 similarity for two convolutional channel configurations:
xi = [50, 80] and xj = [36, 61, 107]. Taking the 1st convolutional layer as an example,
the pre-decided values are u1 = 64, l1 = 16, ω1 = 3 and r1 = 1 (more details on these
choices in Sec. 7.4). The distance is d1 = 3× [(50− 36)/(64− 16)]1 = 0.875, and kernel
value is σ1 = exp

(
−0.5× 0.8752

)
= 0.682. Similarly we get σ2 = 0.466 and σ3 = 0.01

(note that d3 = ω3 due to the absence of the 3rd layer in xi). Combining these using
s1 = s2 = s3 = 1/3 yields σ (xi,xj) = 0.386.

The validity of our covariance kernel can be proved as follows. We note that

since xik and xjk are scalars, d in eq. (7.3a) is the Euclidean distance. It follows

from the properties of the squared exponential kernel that σ (xik, xjk) in eq. (7.3b)

is a valid kernel function. So if a kernel matrix Σk were to be formed such that

Σkij = σ (xik, xjk), then Σk would be positive semi-definite. Writing eq. (7.3c)

in matrix form gives Σ =
∑K

k=1 skΣk. Since a convex combination of positive

semi-definite matrices is also positive semi-definite, it follows that Σ is a valid

covariance matrix.

153

Acquisition function

The acquisition function we choose is expected improvement, given as:

EI(x) = (f ∗ − µpost − ξ)P
(
f ∗ − µpost − ξ

σpost

)
+ σpostp

(
f ∗ − µpost − ξ

σpost

)
(7.4)

where f ∗ is the current optimum value of f , µpost and σpost are the posterior mean

and covariance values obtained by updating the distribution with the current state,

P (·) and p(·) are respectively the cumulative and probability density functions of

the standard normal distribution, and ξ trades off exploration vs exploitation.

7.4 Experimental Results

This section presents results of our search framework on different datasets for both

CNN and MLP classification problems, along with the search settings used. Note

that most of these settings can be customized by the user – this leads to one of

our key contributions of using limited knowledge from literature to enable wider

exploration of NNs for various custom problems. We used the Pytorch library on

two platforms: a) GPU – an Amazon Web Services p3.2xlarge instance that uses

a single NVIDIA V100 GPU with 16 GB memory and 8 vCPUs, and b) CPU – a

mid-2014 Macbook Pro CPU with 2.2 GHz Intel Core i7 processor and 16GB 1.6

GHz DDR3 RAM. For BO, we used n1 = n2 = 15 and n3 = 1000.

154

7.4.1 Datasets and loading

We used the following datasets for CNN experiments:

• CIFAR images: As described in Section 3.3.1, the CIFAR images are of

dimensions (c, h, w) = (3, 32, 32), split into 40,000 for training, 10,000 for

validation, and 10,000 for test. We applied standard augmentation in the

form of channel-wise normalization, random crops from 4 pixel padding on

each side, and random horizontal flips.

• Fashion MNIST (FMNIST) images: The FMNIST dataset has the same

dimensions as MNIST, i.e. (c, h, w) = (1, 28, 28), split into 50,000 for train-

ing, 10,000 for validation, and 10,000 for test.

Augmentation requires Pytorch data loaders that incur timing overheads as com-

pared to storing the whole dataset in memory as a single unit. As a result, we show

results on unaugmented CIFAR-10 as well, where ttr is significantly less compared

to the augmented case.

For MLP experiments, we used the Reuters RCV1 corpus and the MNIST

dataset in permutation-invariant format, both of which are described in Section

3.3.1. Additionally, we also used the FMNIST in permutation-invariant format,

i.e. 784 input features, similar to MNIST. None of the MLP datasets use augmen-

tation, i.e. there are no timing overheads due to data loaders.

155

7.4.2 Convolutional Neural Networks

All CNN experiments are on GPU.

For Stage 1, we use BO to search over CNNs with 4–16 convolutional layers,

the first of which has c1 ∈ {16, 17, · · · , 64} channels and each subsequent layer has

ci+1 ∈ {ci, ci+1, · · · ,min (2ci, 512)} channels. We allow the number of channels in

a layer to have arbitrary integer values, not just fixed to multiples of 8. Kernel sizes

are fixed to 3x3. Downsampling precedes layers where ci crosses 64, 128 and 256

(this is due to GPU memory limitations). During Stage 1, all convolutional layers

are followed by BN and dropout with 30% drop probability. Configs with more

than 8 convolutional layers have shortcut connections. Global average pooling

and a softmax classifier follows the convolutional portion. There are no hidden

classifier layers since we empirically obtained no performance benefit. For both

Stages 1 and 2, we used the default Adam optimizer with η = 10−3, decayed

by 80% at the half and three-quarter points of training, batch size of 256, and

λ = I(Np ≥ 106)×Np/1011, I being the indicator function. We empirically found

this rule to work well.

For Stage 2, the first grid search is over all possible combinations of using either

strides or max pooling for the downsampling layers. Second, we vary the fraction

of BN layers through [0, 1/4, 1/2, 3/4]. For example, if there are 7 convolutional

layers, a setting of 1/2 will place BN layers after convolutional layers 2, 4, 6 and

7. Third, we vary the fraction of dropout layers in a manner similar to BN, and

156

drop probabilities over [0.1, 0.2] for the input layer and [0.15, 0.3, 0.45] for all other

layers. Finally, we search over shortcut connections – none, every 4th layer, or

every other layer. Note that any shortcut connection skips over 2 layers.

For Stage 3, we used BO to search over a) η ∈ {10x} for x ∈ [1, 5], b) λ ∈ {10x}

for x ∈ [−6,−3], with λ converted to 0 when x < −5, and c) batch sizes in [32, 33,

· · · , 512]. We found that batch sizes that are not powers of 2 did not lead to any

slowdown on the platforms used.

The penalty function fc uses normalized ttr, since this is the major bottleneck

in developing CNNs. Each configuration was trained for 100 epochs on the train

set and evaluated on the validation set to obtain fp. We ran experiments for 5

different values of wc: [0, 0.01, 0.1, 1, 10]. The best network from each search was

then trained on the combined training and validation set, and evaluated on the

test set for 300 epochs to get final test accuracies and ttr values.

As shown in Fig. 7.5, we obtain a family of networks by varying wc. Perfor-

mance in the form of test accuracy trades off with complexity in the form of ttr.

The latter is correlated with search cost and Np (albeit not strictly). The last

row of figures directly plot the performance-complexity tradeoff. These curves rise

sharply towards the left and flatten out towards the right, indicating diminishing

performance returns as complexity is increased. This highlights one of our key

contributions – allowing the user to choose fast training NNs that perform well.

157

Figure 7.5: Characterizing a family of NNs for CIFAR-10 augmented (1st column),
unaugmented (2nd column), CIFAR-100 augmented (3rd column) and FMNIST aug-
mented (4th column), obtained from DnC for different wc. We plot test accuracy in 300
epochs (1st row), ttr on combined train and validation sets (2nd row), search cost (3rd
row) and Np (4th row), all against wc. The 5th row shows the performance-complexity
tradeoff, with dot size proportional to search cost.

158

Conv 50
BatchNorm

Conv 52
BatchNorm
Dropout 0.3

Conv 53
BatchNorm

Conv 59, /2
BatchNorm
Dropout 0.3

Conv 95
BatchNorm

Conv 96
BatchNorm
Dropout 0.3

Conv 97
BatchNorm

Conv 120
MaxPool

BatchNorm
Dropout 0.3

Conv 193
BatchNorm

Conv 239
MaxPool

BatchNorm
Dropout 0.3

Conv 351
BatchNorm

Conv 385
BatchNorm
Dropout 0.3

Conv 488
BatchNorm

Conv 496
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

Conv 39

Conv 60
MaxPool

BatchNorm

Conv 120
BatchNorm

Conv 124

BatchNorm
Dropout 0.3

Conv 178

Conv 192
MaxPool

BatchNorm

Conv 292
BatchNorm

Conv 328
BatchNorm
Dropout 0.3

Conv 352

Conv 396
BatchNorm

Conv 488
BatchNorm

Conv 488
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

MaxPool

Conv 46

Conv 51

BatchNorm
Dropout 0.3

Conv 70

Conv 114
BatchNorm
Dropout 0.3

Conv 128, /2
BatchNorm

Conv 208

BatchNorm
Dropout 0.3

Conv 286
BatchNorm

Conv 371
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

MaxPool

BatchNorm

BatchNorm

MaxPool

Conv 116

BatchNorm
Dropout 0.15

MaxPool

Conv 61
MaxPool

Conv 358

Dropout 0.15
BatchNorm

Conv 216

BatchNorm
Dropout 0.15

MaxPool

G. A. Pool
Softmax

Conv 67

Dropout 0.15
MaxPool

Conv 37
MaxPool

Conv 130

G. A. Pool
Softmax

Conv 170
Dropout 0.15

0
0.01

0.1
1

10

wc
Figure 7.6: The best configurations found by DnC for CIFAR-10 augmented for wc =
[0, 0.01, 0.1, 1, 10] from left to right. Each configuration shows the architecture with input
at top and output at bottom. Blue rectangles denote convolutional layers with their c
value and stride shown as ‘/2’, orange BN, purple dropout with drop probability, green
pooling, and finally yellow denotes the softmax classifier. The table at the bottom shows
the best training hyperparameter values obtained.

159

Taking augmented CIFAR-10 as an example, the best configurations found

by DnC are shown in Fig. 7.6. Note that we achieve good performance with

NNs that have irregular {c} values and are also not very deep, in particular, the

wc = 0 configuration just has 14 convolutional layers and yields a test accuracy of

almost 95%. These findings are consistent with those in [153], which discussed the

benefits of using wider and shallower networks, i.e. less layers with more

channels. As regards the effect of wc, note how this architecture has a BN layer

following every convolutional layer, while the architecture for wc = 10 has no BN

layers so as to reduce ttr. Note also how the weight decay λ values are strictly

correlated with the Np values in the 4th row, 1st column of Fig. 7.5. This is

expected since more trainable parameters implies a higher chance of overfitting,

hence requiring a larger L2 regularization coefficient. Finally, it is interesting that

we obtain a best η of 0.001 in most cases – as suggested in the original Adam

paper [41].

7.4.3 Multilayer Perceptrons

We ran CPU experiments on the MNIST and FMNIST datasets, and GPU exper-

iments on the Reuters RCV1 dataset.

For Stage 1, we search over 0–2 hidden layers for MNIST and FMNIST, num-

ber of nodes in each being 20–400. These numbers change for RCV1 to 0–3 and

50–1000 since it is a larger dataset. Every layer is followed by a dropout layer with

160

20% drop probability. Training hyperparameters are fixed as in the case of CNNs,

with the difference that λ = I(Np ≥ 104)×Np/109 for MNIST and FMNIST and

λ = I(Np ≥ 105)×Np/1010 for RCV1. For Stage 2, we do a grid search over drop

probabilities in [0, 0.1, 0.3, 0.4, 0.5], and for Stage 3, the training hyperparameter

search is identical to CNNs.

We ran separate searches for individual penalty functions – normalized ttr and

normalized Np. The latter is owing to the fact that MLPs often massively increase

the number of parameters and thereby storage complexity of NNs [1]. The train-

validation-test splits for MNIST and FMNIST are 50k-10k-10k, and 178k-50k-

100k for RCV1. Candidate networks were trained for 60 epochs and the final

networks tested after 180 epochs. As before, wc ∈ [0, 0.01, 0.1, 1, 10] for MNIST

and FMNIST. For RCV1, the results for wc = 10 were mostly similar to wc = 1,

so we replace 10 with 0.03. The plots against wc are shown in Fig. 7.7, where pink

dots are for ttr penalty and black crosses are for Np penalty.

The trends in Fig. 7.7 are qualitatively similar to those in Fig. 7.5. When

penalizing Np, the two lowest complexity networks in each case have no hidden

layers, so they both have exactly the sameNp (results differ due to different training

hyperparameters). Of interest is the subfigure on the bottom right, indicating much

longer search times when penalizing Np as compared to ttr. This is because time

is not a factor when penalizing Np, so the search picks smaller batch sizes that

increase ttr with a view to improving performance. Interestingly enough, this does

161

Figure 7.7: Characterizing a family of NNs for MNIST (1st column) and FMNIST (2nd
column) on CPU, and RCV1 (3rd column) on GPU, obtained from DnC for different wc.
We plot test accuracy in 180 epochs (1st row), ttr on combined train and validation sets
(2nd row), Np (3rd row), and search cost (4th row), all against wc. The search penalty
is ttr for the pink dots and Np for the black crosses.

not actually lead to performance benefit as shown in the subfigure on the top-right,

where the black crosses occupy similar locations as the pink dots.

162

7.5 Comparison to related work

To the best of our knowledge, only DnC allows the user to specifically penalize

complexity of the resulting models. This allows our framework to find models

with performance comparable to other state-of-the-art methods, while significantly

reducing the computational burden of training. This is shown in Table 7.2, which

compares the search process and metrics of the final model found for CNNs on

CIFAR-10, and Table 7.3, which does the same for MLPs on FMNIST and RCV1

for DnC and Auto-PyTorch only, since Auto-Keras and AutoGluon do not have

explicit support for MLPs at the time of writing1. The comparisons were achieved

with the help of Saikrishna Chaitanya Kanala.

Note that Auto-Keras and AutoGluon do not support explicitly obtaining the

final model from the search, which is needed to perform separate inference on the

test set after the search. As a result, in order to have a fair comparison, Tables

7.2 and 7.3 use metrics from the search process – ttr is for the train set and the

performance metric is best validation accuracy. These are reported for the best

model found from each search. Auto-Keras and AutoGluon use fixed batch sizes

across all models, however, Auto-PyTorch and DnC also do a search over batch

sizes. We have included batch size since it affects ttr. Each configuration for

1There is no mention in the documentation and multiple unresolved issues on Github regarding
the absence of MLPs

163

Table 7.2: Comparing Frameworks on CNNs for CIFAR-10 augmented on GPU

Framework
Additional Search cost Best model found from search
settings (GPU hrs) Architecture ttr (sec) Batch size Best val acc (%)

Proxyless NASa Proxyless-G 96 537 convolutional layers 429 64 93.22
Auto-Kerasb Default run 14.33 Resnet-20 v2 33 32 74.89

AutoGluon
Default run 3 Resnet-20 v1 37 64 88.6
Extended run 101 Resnet-56 v1 46 64 91.22

Auto-Pytorch
‘tiny cs’ 6.17 30 convolutional layers 39 64 87.81
‘full cs’ 6.13 41 convolutional layers 31 106 86.37

Deep-n-Cheap
wc = 0 29.17 14 convolutional layers 10 120 93.74
wc = 0.1 19.23 8 convolutional layers 4 459 91.89
wc = 10 16.23 4 convolutional layers 3 256 83.82

aSince Proxyless NAS is a search methodology as opposed to an AutoML framework, we
trained the final best model provided to us by the authors [154]. This model was trained in [24]
using stochastic depth and additional cutout augmentation [154] – yielding an impressive 97.92%
accuracy on their test set. The result shown here was obtained without cutout or stochastic
depth, and the validation accuracy is reported to compare with the metrics available from Auto-
Keras and AutoGluon. The primary point of including Proxyless NAS is to compare to a model
with state-of-the-art accuracy that has been highly optimized for CIFAR-10.

bAuto-Keras does not support image augmentation at the time of writing this paper [155], so
we used results from the unaugmented dataset.

each search is run for the same number of epochs, as described in Sec. 7.4. The

exception is Auto-PyTorch, where a key feature is variable number of epochs.

We note that for CNNs, DnC results in both the fastest ttr and highest per-

formance. The performance of Proxyless NAS is comparable, while taking 43X

more time to train. This highlights one of our key features – the ability to

find models with performance comparable to state-of-the-art while mas-

sively reducing training complexity. The search cost is lowest for the default

AutoGluon run, which only runs 3 configurations. We also did an extended run

for ∼ 100 models on AutoGluon to make it match with DnC and Auto-Keras –

this results in the longest search time without significant performance gain.

164

Table 7.3: Comparing AutoML Frameworks on MLPs for FMNIST and RCV1 on GPU

Framework
Additional Search cost Best model found from search
settings (GPU hrs) MLP layers Np ttr (sec) Batch size Best val acc (%)

Fashion MNIST

Auto-Pytorch
‘tiny cs’ 6.76 50 27.8M 19.2 125 91

‘medium cs’ 5.53 20 3.5M 8.3 184 90.52
‘full cs’ 6.63 12 122k 5.4 173 90.61

Deep-n-Cheap wc = 0 0.52 3 263k 0.4 272 90.24
(penalize ttr) wc = 10 0.3 1 7.9k 0.1 511 84.39
Deep-n-Cheap wc = 0 0.44 2 317k 0.5 153 90.53
(penalize Np) wc = 10 0.4 1 7.9k 0.2 256 86.06

Reuters RCV1

Auto-Pytorch
‘tiny cs’ 7.22 38 19.7M 39.6 125 88.91

‘medium cs’ 6.47 11 11.2M 22.3 337 90.77
Deep-n-Cheap wc = 0 1.83 2 1.32M 0.7 503 91.36
(penalize ttr) wc = 1 1.25 1 100k 0.4 512 90.34
Deep-n-Cheap wc = 0 2.22 2 1.6M 0.6 512 91.36
(penalize Np) wc = 1 1.85 1 100k 5.54 33 90.4

For MLPs, DnC has the fastest search times and lowest ttr and Np values – this

is a result of it searching over simpler models with few hidden layers. While Auto-

PyTorch performs slightly better for the benchmark FMNIST, our framework gives

better performance for the more customized RCV1 dataset.

7.6 Investigations and insights

7.6.1 Search transfer

One goal of our search framework is to find models that are applicable to a wide

variety of problems and datasets suited to different user requirements. To evaluate

this aspect, we experimented on whether a NN architecture found from searching

165

Stage 1
and 2 on
dataset B

Stage 3 on
dataset B

Stage 1
and 2 on
dataset A

Stage 3 on
dataset B

Search
Transfer

Final
Config

Final
Config}

Compare

Native

Figure 7.8: Left : Process of search transfer – comparing configurations obtained from
native search with those where Stage 3 is done on a dataset different from Stages 1 and 2.
Right : Results of CNN search transfer to (a) CIFAR-10, (b) CIFAR-100, (c) FMNIST.
All datasets are augmented. Pink dots denote native search.

through Stages 1 and 2 on dataset A can be applied to dataset B after searching

for Stage 3 on it. In other words, how does transferring an architecture compare to

‘native’ configurations, i.e. those searched for through all three stages on dataset

B. This process is shown on the left in Fig. 7.8. Note that we repeat Stage 3 of

the search since it optimizes training hyperparameters such as weight decay, which

are related to the capacity of the network to learn a new dataset. This is contrary

to simply transferring the architecture as in [137].

We took the best CNN architectures found from searches on CIFAR-10, CIFAR-

100 and FMNIST (as depicted in Fig. 7.5) and transferred them to each other for

Stage 3 searching. The results for test accuracy and ttr are shown on the right

in Fig. 7.8. We note that the architectures generally transfer well. In particular,

166

transferring from FMNIST (green crosses in subfigures (a) and (b)) results in

slight performance degradation since those architectures have Np around 1M-2M,

while some architectures found from native searches (pink dots) on CIFAR have

Np > 20M. However, architectures transferred between CIFAR-10 and -100 often

exceed native performance. Moreover, almost all the architectures transferred from

CIFAR-100 (green crosses in subfigure (c)) exceed native performance on FMNIST,

which again is likely due to bigger Np. We also note that ttr values remain very

similar on transferring, except for the wc = 0 case where there is absolutely no

time penalty.

7.6.2 Greedy strategy

Our search methodology is greedy in the sense that it preserves only the best

configuration resulting in the minimum f value from each stage and sub-stage. We

also experimented with a non-greedy strategy. Instead of one, we picked the three

best configurations from Stage 1 – {x1,x2,x3}, then ran separate grid searches on

each of them to get three corresponding configurations at the end of Stage 2, and

finally picked the three best configurations for each of their Stage 3 runs for a total

of nine different configurations – {x11,x12,x13,x21, · · · ,x33}. Following a purely

greedy approach would have resulted in only x11, while following a greedy approach

for Stages 1 and 2 but not Stage 3 would have resulted in {x11,x12,x13}. We

plotted the losses for each configuration for five different values of wc on CIFAR-10

167

Figure 7.9: Search objective values (lower the better) for three best configurations from
Stage 1 (blue, red, black), optimized through Stages 2 and 3 and three best configurations
chosen for each in Stage 3. Results shown for different wc on CIFAR-10 unaugmented.

Figure 7.10: Search objective values (lower the better) for purely random search (30
samples, blue) vs purely grid search via Sobol sequencing (30 samples, green) vs balanced
BO (15 initial samples, 15 optimized samples, red) vs extreme BO (1 initial sample, 29
optimized samples, black). Results shown for different wc on CIFAR-10 unaugmented.

unaugmented (Fig. 7.9 shows three of these). In each case we found that following

a purely greedy approach yielded best results, which justifies our choice for DnC.

7.6.3 Bayesian optimization vs random and grid search

We use Sobol sequencing [156] – a space-filling method that selects points similar

to grid search – to select initial points from the search space and construct the BO

168

prior. We experimented on the usefulness of BO by comparing the final search loss

f achieved by performing the Stage 1 and 3 searches in four different ways:

• Random search: pick 30 prior points randomly, no optimization steps

• Grid search: pick 30 prior points via Sobol sequencing, no optimization steps

• Balanced BO (DnC default): pick 15 prior points via Sobol sequencing, 15

optimization steps

• Extreme BO: pick 1 initial point, 29 optimization steps

The results in Fig. 7.10 are for different wc on CIFAR-10. BO outperforms

random and grid search on each occasion. In particular, more optimization steps

are beneficial for low complexity models, while the advantages of BO are not

significant for high performing models. We believe that this is due to the fact that

many deep nets [153] are fairly robust to training hyperparameter settings.

7.6.4 Ensembling

One way to increase performance such as test accuracy is by having an ensemble

of multiple networks vote on the test set. This comes at a complexity cost since

multiple NNs need to be trained. We experimented on ensembling by taking the n

best networks from BO in Stage 3 of our search. Note that this does not increase the

search cost as long as n ≤ n1 + n2. However, it does increase the effective number

of parameters by a factor of exactly n (since each of the n best configurations have

169

Figure 7.11: Performance-complexity tradeoff for single configurations (circles) vs
ensemble of configurations (pluses) for wc = 0 (blue), 0.01 (red), 0.1 (green), 1 (black),
10 (pink). Results using ensemble of 5 for CIFAR-10 augmented, and 3 for CIFAR-10
unaugmented.

the same architecture), and ttr by some indeterminate factor (since each of the n

best configurations might have a different batch size).

We experimented on CIFAR-10 unaugmented using n = 3 and augmented using

n = 5. The impact on the performance-complexity tradeoff is shown in Fig. 7.11.

Note how the plus markers – ensemble results – have slightly better performance

at the cost of significantly increased complexity as compared to the circles – single

results. However, we did not use ensembling in other experiments since the slight

increases in accuracy do not usually justify the significant increases in ttr.

7.6.5 Changing hyperparameters of Bayesian Optimization

The BO process itself has several hyperparameters that can be customized by the

user, or optimized using marginal likelihood or Markov chain Monte Carlo methods

170

[139]. This section describes the default values we used. Expected improvement

involves an exploration-exploitation tradeoff variable ξ. The recommended default

is ξ = 0.01 [151], however, we tried different values and empirically found ξ =

10−4 to work well. Secondly, f is a noisy function since the computed values of

network performance are noisy due to random initialization of weights and biases

for each new state. Accordingly, and also considering numerical stability for the

matrix inversions involved in BO, our algorithm incorporates a noise term σ2
n. We

calculated its value from the variance in f values as σ2
n = 10−4, which worked well

compared to other values we tried.

7.6.6 Adaptation to various platforms

While most deep NNs are run on GPUs, situations may arise where GPUs are

not readily or freely available and it is desirable to run simpler experiments such

as MLP training on CPUs. DnC can adapt its penalty metrics to any platform.

For example, the FMNIST results shown in Fig. 7.7 were on CPU, while Table

7.3 shows results on GPU (to do a fair comparison with other frameworks). As a

result, the ttr values are an order of magnitude faster, while the performance is the

same as expected.

171

7.7 Summary

This chapter discussed Deep-n-Cheap – the first AutoML framework that specifi-

cally considers training complexity of the resulting models during searching. The

wall clock training time per epoch that we use is a measure that automatically takes

the computing platform and software libraries into account. While our framework

can be customized to search over any number of layers, it is interesting that we

obtained competitive performance on various datasets using models significantly

less deep than those obtained from other AutoML and search frameworks in lit-

erature. We also found that it is possible to transfer a family of architectures

found using different wc values between different datasets without performance

degradation. The framework uses Bayesian optimization and a three-stage greedy

search process – these were empirically demonstrated to be superior to other search

methods and less greedy approaches.

DnC currently supports classification using CNNs and MLPs. Our future plans

are to extend to other types of networks such as recurrent and other applications

of deep learning such as segmentation, which would also require expanding the

set of hyperparameters searched over. The framework is open source and offers

considerable customizability to the user. We hope that DnC becomes widely used

and provides efficient NN design solutions to many users.

172

Chapter 8

Conclusion

This chapter concludes this dissertation. We provide a summary of the field of

neural networks, our achieved contributions, and the work discussed in this docu-

ment.

8.1 Summary

Despite the recent spurt of interest in NNs, they are not a completely new concept.

The perceptron, which can be considered a very simple NN, was created in 1958

by Rosenblatt [157]. After a few decades of research stagnation, interest in NNs

was again piqued in 1986 when Rumelhart et al. proposed backpropagation [158].

However, computers in the 1980s and 90s were not equipped to handle machine

learning and NNs on a large scale as is done today. It was much more recently in

the 2010s, perhaps with the publication of AlexNet [1], that the research interest

and usage of NNs have skyrocketed. As a result, NNs have become the backbone

of many AI applications nowadays, and are the major driving force behind the

wide variety of ‘smart’ technologies that have become ubiquitous in our lives. This

exponential growth in interest is summarized by Figs. 8.1 and 8.2, which show the

173

Figure 8.1: Number of AI papers on Scopus from 1998–2017, grouped by subcategory.
Figure courtesy [159].

number of papers related to AI published in two widely used research databases –

Elsevier’s Scopus, and arXiv, respectively. Notice how NN papers on Scopus have

tripled in the last decade, while net AI papers on arXiv have grown by more than

10X from 2010 to 2017.

The growth in interest in NNs has also translated to a growth in their com-

plexity. In particular, there has been a tendency in industry players to drive the

field of NNs forward by exponentially increasing the number of parameters, as

shown in Fig. 8.3. While this parameter explosion has led to pushing the frontiers

of what NNs can achieve, it has often sacrificed a deeper understanding of the

field and practical considerations such as the carbon footprint [161] and economic

174

Figure 8.2: Number of AI papers on arXiv from 2010–2017, grouped by subcategory.
Figure courtesy [159].

Figure 8.3: Total number of trainable parameters in some popular deep NN architectures
over the years. Figure courtesy [160, Fig. 1].

175

footprint [9–11] of NNs. This status quo is concerning because it puts the reins of

NN research into the sole hands of a few (often selfish) entities with the financial

wherewithal to deploy GPUs and other computational resources at a scale well

beyond the reach of most other entities. In other words, the NN parameter explo-

sion has resulted in an oligarchy of sorts, where the barrier to entry in terms of

required computational resources can push many prospective researchers away.

Our Contributions

The work presented in this dissertation attempts to democratize the devel-

opment of NNs by lowering their complexity. In particular, our proposed

method of pre-defined sparsity simplifies the computational burden of NNs

from the beginning of their deployment, i.e. prior to training. This is crucial

for implementing NNs on custom hardware, such as we have developed. We

have also analyzed connection patterns with a view to identifying good NN

configurations. This segued into our work in automated machine learning,

where we have developed a user-friendly framework called Deep-n-Cheap to

search for NNs with good performance and low complexity. Despite many

existing works suggesting the contrary, we have achieved state-of-the-art per-

formance with NNs that also train quickly. As an additional effort, we have

also developed a family of datasets of varying difficulty for benchmarking

machine learning algorithms and applications.

176

8.2 Final Word

The field of NNs is exciting, with new research and novel techniques being devel-

oped every day. We believe our research has the potential to enable NN explo-

ration on a wider scale. While this dissertation encompasses a significant amount

of work, it is by no means the end of the road. A better understanding of sparse

connection patterns, improving the hardware architecture, and maintaining and

extending Deep-n-Cheap are a few aspects that will be explored in the future. For

more information on our research group, current projects and mission, the reader

is encouraged to visit our website [81].

177

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Proc. Advances in Neural Informa-
tion Processing Systems 25 (NeurIPS), 2012, pp. 1097–1105.

[2] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba, “End to end learning for self-driving cars,” arXiv e-print
arXiv:1604.07316, 2016.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition: The shared views of
four research groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
82–97, Nov 2012.

[4] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature
detectors,” arXiv e-print arXiv:1207.0580, 2012.

[5] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-
resnet and the impact of residual connections on learning,” arXiv e-print
arXiv:1602.07261, 2016.

[6] A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro,
“Deep learning with COTS HPC systems,” in Proc. 30th Int. Conf. Machine
Learning (ICML), vol. 28, 2013, pp. III–1337–III–1345.

[7] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connec-
tions for efficient neural networks,” in Proc. Advances in Neural Information
Processing Systems 28 (NeurIPS), 2015, pp. 1135–1143.

[8] N. P. Jouppi, C. Young, N. Patil et al., “In-datacenter performance analysis
of a tensor processing unit,” in 2017 ACM/IEEE 44th Annu. Int. Symp.
Computer Architecture (ISCA), June 2017.

178

[9] G. Cloud, “GPUs pricing,” https://cloud.google.com/compute/gpus-pricing,
accessed on Apr 10th, 2020.

[10] A. AWS, “Amazon EMR pricing,” https://aws.amazon.com/emr/pricing/,
accessed on Apr 10th, 2020.

[11] M. Azure, “Cloud services pricing,” https://azure.microsoft.com/en-us/
pricing/details/cloud-services/, accessed on Apr 10th, 2020.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2015, pp.
1–9.

[13] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev, “Compressing deep convolu-
tional networks using vector quantization,” arXiv e-print arXiv:1412.6115,
2014.

[14] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Com-
pressing neural networks with the hashing trick,” in Proc. 32nd Int. Conf.
Machine Learning (ICML), 2015.

[15] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” in Proc.
Int. Conf. Learning Representations (ICLR), 2016.

[16] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient inference engine on compressed deep neural network,”
in Proc. 43rd Int. Symp. Computer Architecture (ISCA), 2016.

[17] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural architecture
search system,” in Proc. KDD, 2019, pp. 1946–1956.

[18] AWSLabs, “AutoGluon: AutoML toolkit for deep learning,” https://
autogluon.mxnet.io/#.

[19] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, M. Urban, M. Burkart,
M. Dippel, M. Lindauer, and F. Hutter, “Towards automatically-tuned deep
neural networks,” in AutoML: Methods, Sytems, Challenges. Springer, 2018,
ch. 7, pp. 141–156.

[20] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” arXiv e-print arXiv:1802.03268,
2018.

179

https://cloud.google.com/compute/gpus-pricing
https://aws.amazon.com/emr/pricing/
https://azure.microsoft.com/en-us/pricing/details/cloud-services/
https://azure.microsoft.com/en-us/pricing/details/cloud-services/
https://autogluon.mxnet.io/#
https://autogluon.mxnet.io/#

[21] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat, “Evolving
deep neural networks,” in Artificial Intelligence in the Age of Neural Networks
and Brain Computing. Academic Press, 2019, ch. 15, pp. 293 – 312.

[22] K. Kandasamy, W. Neiswanger, J. Schneider, B. Póczos, and E. P. Xing,
“Neural architecture search with bayesian optimisation and optimal trans-
port,” in Proc. Advances in Neural Information Processing Systems 31
(NeurIPS), 2018, pp. 2020–2029.

[23] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyper-
band: Bandit - based configuration evaluation for hyperparameter optimiza-
tion,” in Proc. Int. Conf. Learning Representations (ICLR), 2017.

[24] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture search
on target task and hardware,” in Proc. Int. Conf. Learn. Representations
(ICLR), 2019.

[25] S. Dey, K.-W. Huang, P. A. Beerel, and K. M. Chugg, “Pre-defined sparse
neural networks with hardware acceleration,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 332–345, June
2019.

[26] S. Dey, K.-W. Huang, P. A. Beerel, and K. M. Chugg, “Characterizing sparse
connectivity patterns in neural networks,” in Proc. 2018 Information Theory
and Applications Workshop (ITA), Feb 2018, pp. 1–9.

[27] S. Dey, Y. Shao, K. M. Chugg, and P. A. Beerel, “Accelerating training of
deep neural networks via sparse edge processing,” in Proc. 26th Int. Conf.
Artificial Neural Networks (ICANN). Springer, Sep 2017, pp. 273–280.

[28] S. Dey, D. Chen, Z. Li, S. Kundu, K.-W. Huang, K. M. Chugg, and
P. A. Beerel, “A highly parallel FPGA implementation of sparse neu-
ral network training,” in Proc. Int. Conf. ReConFigurable Computing and
FPGAs (ReConFig), Dec 2018, pp. 1–4, expanded e-print version available
at https://arxiv.org/abs/1806.01087.

[29] S. Dey, P. A. Beerel, and K. M. Chugg, “Interleaver design for deep neural
networks,” in Proc. 51st Asilomar Conf. Signals, Systems, and Computers
(ACSSC), Oct 2017, pp. 1979–1983.

[30] S. Dey, “Github repository: predefinedsparse-nnets,” https://github.com/
souryadey/predefinedsparse-nnets.

180

https://arxiv.org/abs/1806.01087
https://github.com/souryadey/predefinedsparse-nnets
https://github.com/souryadey/predefinedsparse-nnets

[31] ——, “Github repository: deep-n-cheap,” https://github.com/souryadey/
deep-n-cheap.

[32] S. Dey, K. M. Chugg, and P. A. Beerel, “Morse code datasets for machine
learning,” in Proc. 9th Int. Conf. Computing, Communication and Network-
ing Technologies (ICCCNT), Jul 2018, pp. 1–7.

[33] S. Dey, “Github repository: morse-dataset,” https://github.com/souryadey/
morse-dataset.

[34] ——, “Ieeedataport: Morse code symbol classification,” https://ieee-
dataport.org/open-access/morse-code-symbol-classification.

[35] ——, “Matrix calculus,” University of Southern California, Tech. Rep., 2019,
available online at https://www.researchgate.net/publication/332131671_
Matrix_Calculus.

[36] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proc. 27th Int. Conf. Machine Learning (ICML), 2010,
pp. 807–814.

[37] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,” Mas-
ter’s thesis, TU Munich, 1991.

[38] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proc. 13th Int. Conf. Artificial Intelligence and
Statistics, 2010, pp. 249–256.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification,” in Proc. IEEE Int.
Conf. Computer Vision (ICCV), 2015, pp. 1026–1034.

[40] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
e-print arXiv:1609.04747, 2016.

[41] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. Int. Conf. Learning Representations (ICLR), 2014.

[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[43] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. 32nd Int. Conf.
Machine Learning (ICML), 2015.

181

https://github.com/souryadey/deep-n-cheap
https://github.com/souryadey/deep-n-cheap
https://github.com/souryadey/morse-dataset
https://github.com/souryadey/morse-dataset
https://ieee-dataport.org/open-access/morse-code-symbol-classification
https://ieee-dataport.org/open-access/morse-code-symbol-classification
https://www.researchgate.net/publication/332131671_Matrix_Calculus
https://www.researchgate.net/publication/332131671_Matrix_Calculus

[44] A. Deshpande, “A beginner’s guide to understanding convolutional neu-
ral networks,” https://adeshpande3.github.io/A-Beginner%27s-Guide-To-
Understanding-Convolutional-Neural-Networks/, Jul 2016.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. Computer Vision and Pattern Recognition, 2016, pp.
770–778.

[46] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, ch. 9, http://www.deeplearningbook.org.

[47] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press,
2015, ch. 6.

[48] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learn-
ing,” arXiv e-print arXiv:1603.07285, 2016.

[49] K. Bai, “A comprehensive introduction to different types of con-
volutions in deep learning,” https://towardsdatascience.com/a-
comprehensive-introduction-to-different-types-of-convolutions-in-deep-
learning-669281e58215, Feb 2019.

[50] K. M. Chugg, “Convolutional neural networks,” https://hal.usc.edu/chugg/
docs/deep_learning/cnns.pdf, Apr 2020.

[51] W. Bao, J. Yue, and Y. Rao, “A deep learning framework for financial time
series using stacked autoencoders and long-short term memory,” PLoS ONE,
vol. 12, Jul 2017.

[52] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. D. Freitas, “Predict-
ing parameters in deep learning,” in Proc. Advances in Neural Information
Processing Systems 26 (NeurIPS), 2013, pp. 2148–2156.

[53] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding
deep learning requires rethinking generalization,” in Proc. Int. Conf. Learn-
ing Representations (ICLR), 2017.

[54] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bina-
rized neural networks: Training deep neural networks with weights and acti-
vations constrained to +1 or -1,” arXiv e-print arXiv:1602.02830, 2016.

[55] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network com-
puting,” in Proc. 2016 ACM/IEEE 43rd Annu. Int. Symp. Computer Archi-
tecture (ISCA), 2016, pp. 1–13.

182

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
http://www.deeplearningbook.org
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://hal.usc.edu/chugg/docs/deep_learning/cnns.pdf
https://hal.usc.edu/chugg/docs/deep_learning/cnns.pdf

[56] B. Reagen, P. Whatmough, R. Adolf et al., “Minerva: Enabling low-power,
highly-accurate deep neural network accelerators,” in Proc. 2016 ACM/IEEE
43rd Annu. Int. Symp. Computer Architecture (ISCA), 2016, pp. 267–278.

[57] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex pruning
of deep neural networks with performance guarantee,” in Proc. Advances in
Neural Information Processing Systems 30 (NeurIPS), 2017.

[58] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks
with low precision multiplications,” arXiv e-print arXiv:1412.7024, 2014.

[59] S. Gupta, A. Agarwal, K. Gopalakrishnan, and P. Narayanan, “Deep learning
with limited numerical precision,” arXiv e-print arXiv:1502.02551, 2015.

[60] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and C. Zhang, “FPGA-
accelerated dense linear machine learning: A precision-convergence trade-
off,” in Proc. IEEE Int. Symp. Field-Programmable Custom Computing
Machines, 2017.

[61] A. Sanyal, P. A. Beerel, and K. M. Chugg, “Neural network training with
approximate logarithmic computations,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), May 2020, pp. 3122–
3126.

[62] V. Sindhwani, T. Sainath, and S. Kumar, “Structured transforms for small-
footprint deep learning,” in Proc. Advances in Neural Information Processing
Systems 28 (NeurIPS), 2015, pp. 3088–3096.

[63] S. Wang, Z. Li, C. Ding, B. Yuan, Y. Wang, Q. Qiu, and Y. Liang, “C-
LSTM: Enabling efficient LSTM using structured compression techniques
on FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate
Arrays, 2018.

[64] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity
in deep neural networks,” in Proc. Advances in Neural Information Process-
ing Systems 29 (NeurIPS), 2016, pp. 2074–2082.

[65] S. Srinivas, A. Subramanya, and R. V. Babu, “Training sparse neural net-
works,” in IEEE Conf. Computer Vision and Pattern Recognition Workshops
(CVPRW), July 2017, pp. 455–462.

[66] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Dian-
nao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning,” in Proc. 19th Int. Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014, pp. 269–284.

183

[67] S. Zhang, Z. Du, L. Zhang et al., “Cambricon-X: An accelerator for sparse
neural networks,” in Proc. 2016 49th Annu. IEEE/ACM Int. Symp. Microar-
chitecture (MICRO), 2016, pp. 1–12.

[68] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE
Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[69] D. Shin, J. Lee, J. Lee, and H. Yoo, “14.2 DNPU: An 8.1TOPS/W recon-
figurable CNN-RNN processor for general-purpose deep neural networks,” in
IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb 2017, pp. 240–241.

[70] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, and J. Seo, “ALAMO: FPGA acceler-
ation of deep learning algorithms with a modularized RTL compiler,” Inte-
gration, the VLSI Journal, 2018.

[71] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s. Seo,
and Y. Cao, “Throughput-optimized OpenCL-based FPGA accelerator for
large-scale convolutional neural networks,” in Proc. 2016 ACM/SIGDA Int.
Symp. Field-Programmable Gate Arrays. ACM, 2016, pp. 16–25.

[72] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang, H. Yang, and W. B. J. Dally, “ESE: Efficient speech recognition
engine with sparse LSTM on FPGA,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2017, pp. 75–84.

[73] R. G. Gironés, R. C. Palero, J. C. Boluda, and A. S. Cortés, “FPGA imple-
mentation of a pipelined on-line backpropagation,” Journal of VLSI signal
processing systems for signal, image and video technology, vol. 40, no. 2, pp.
189–213, Jun 2005.

[74] N. Izeboudjen, A. Farah, H. Bessalah, A. Bouridene, and N. Chikhi, “Towards
a platform for FPGA implementation of the MLP based back propagation
algorithm,” in Computational and Ambient Intelligence, 2007, pp. 497–505.

[75] A. Gomperts, A. Ukil, and F. Zurfluh, “Development and implementation
of parameterized FPGA-based general purpose neural networks for online
applications,” IEEE Transactions on Industrial Informatics, vol. 7, no. 1,
pp. 78–89, Feb 2011.

[76] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, “Dadiannao: A machine-learning supercomputer,”
in 47th Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec 2014, pp. 609–
622.

184

[77] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU: A scalable
deep learning accelerator unit on FPGA,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 3, pp. 513–517,
Mar 2017.

[78] A. Bourely, J. P. Boueri, and K. Choromonski, “Sparse neural network topolo-
gies,” arXiv e-print arXiv:1706.05683, 2017.

[79] A. Prabhu, G. Varma, and A. M. Namboodiri, “Deep expander networks:
Efficient deep networks from graph theory,” arXiv e-print arXiv:1711.08757,
2017.

[80] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and
A. Liotta, “Scalable training of artificial neural networks with adaptive sparse
connectivity inspired by network science,” Nature Communications, vol. 9,
2018.

[81] USC HAL team, “Hardware accelerated learning,” https://hal.usc.edu/.

[82] S. Kundu, S. Prakash, H. Akrami, P. B. Beerel, and K. M. Chugg, “PSConv:
A pre-defined sparse kernel based convolution for deep CNNs,” in Allerton
Conference on Communication, Control, and Computing, Sep. 2019.

[83] S. Kundu, M. Nazemi, M. Pedram, K. M. Chugg, and B. Peter, “Pre-defined
sparsity for low-complexity convolutional neural networks,” IEEE Transac-
tions on Computers, pp. 1–1, 2020, early Access.

[84] J. Yosinski and H. Lipson, “Visually debugging restricted boltzmann machine
training with a 3D example,” in Proc. 29th Int. Conf. Machine Learning
(ICML), 2012.

[85] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of handwritten
digits,” http://yann.lecun.com/exdb/mnist/.

[86] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A new bench-
mark collection for text categorization research,” Journal of machine learning
research, vol. 5, pp. 361–397, Apr 2004.

[87] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L.
Dahlgren, and V. Zue, “TIMIT acoustic-phonetic continuous speech corpus,”
https://catalog.ldc.upenn.edu/LDC93S1.

[88] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition using
hidden markov models,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 11, pp. 1641–1648, Nov 1989.

185

https://hal.usc.edu/
http://yann.lecun.com/exdb/mnist/
https://catalog.ldc.upenn.edu/LDC93S1

[89] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measurement
of the psychological magnitude pitch,” The Journal of the Acoustical Society
of America, vol. 8, no. 185, 1937.

[90] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Mas-
ter’s thesis, University of Toronto, 2009.

[91] F. Chollet et al., “Keras,” https://keras.io, 2015.

[92] M. Abadi, A. Agarwal, P. Barham et al., “TensorFlow: Large-scale machine
learning on heterogeneous systems,” https://www.tensorflow.org/, 2015,
software available from tensorflow.org.

[93] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective, 4th ed. Pearson, 2010.

[94] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: training
ImageNet in 1 hour,” arXiv e-print arXiv:1706.02677, 2017.

[95] D. Masters and C. Luschi, “Revisiting Small Batch Training for Deep Neural
Networks,” arXiv e-print arXiv:1804.07612, 2018.

[96] Digilent, “Nexys 4 DDR,” https://reference.digilentinc.com/reference/
programmable-logic/nexys-4-ddr/start.

[97] Xilinx, “VIRTEX ultra-scale+,” https://www.xilinx.com/products/silicon-
devices/fpga/virtex-ultrascale-plus.html.

[98] Amazon Web Services, “Amazon EC2 F1 instances,”
https://aws.amazon.com/ec2/instance-types/f1/.

[99] A. S. Asratian, T. M. J. Denley, and R. Haggkvist, Bipartite Graphs and
Their Applications. Cambridge University Press, 1998.

[100] A. Barvinok, “On the number of matrices and a random matrix with pre-
scribed row and column sums and 0–1 entries,” Advances in Mathematics,
vol. 224, no. 1, pp. 316–339, 2010.

[101] G. Masera, G. Piccinini, M. R. Roch, and M. Zamboni, “VLSI architectures
for turbo codes,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 7, no. 3, pp. 369–379, 1999.

[102] T. Brack, M. Alles, T. Lehnigk-Emden et al., “Low complexity LDPC code
decoders for next generation standards,” in Design, Automation & Test in
Europe Conf. & Exhibition (DATE), 2007, pp. 1–6.

186

https://keras.io
https://www.tensorflow.org/
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html

[103] S. Crozier and P. Guinand, “High-performance low-memory interleaver banks
for turbo-codes,” in Vehicular Technology Conf., 2001. VTC 2001 Fall. IEEE
VTS 54th, vol. 4, 2001, pp. 2394–2398.

[104] G. M. Weiss and F. Provost, “Learning when training data are costly: The
effect of class distribution on tree induction,” Journal of Artificial Intelligence
Research, vol. 19, pp. 315–354, 2003.

[105] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[106] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” in Proc. Int. Conf. Learning Representations (ICLR), 2015.

[107] A. Schumacher, “Problems with imagenet and its solutions,” https:
//planspace.org/20170911-problems_with_imagenet_and_its_solutions/,
September 2017.

[108] J. Prendki, “The curse of big data labeling and three ways to solve
it,” https://aws.amazon.com/blogs/apn/the-curse-of-big-data-labeling-and-
three-ways-to-solve-it/, November 2018.

[109] M. Gregory and K. Ocasio, “The [hidden] challenges of ML series: Quadrant
2 data preparation,” https://www.ntconcepts.com/the-hidden-challenges-of-
ml-series-quadrant-2-data-preparation/, February 2019.

[110] X. Peng, B. Sun, K. Ali, and K. Saenko, “Learning deep object detectors
from 3D models,” in Proc. IEEE Int. Conf. Computer Vision (ICCV). IEEE
Computer Society, 2015, pp. 1278–1286.

[111] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Toward geometric deep
SLAM,” arXiv e-print arXiv:1707.07410, 2017.

[112] T. Anh Le, A. G. Baydin, R. Zinkov, and F. Wood, “Using synthetic
data to train neural networks is model-based reasoning,” arXiv e-print
arXiv:1703.00868, 2017.

[113] N. Patki, R. Wedge, and K. Veeramachaneni, “The synthetic data vault,” in
Proc. IEEE Int. Conf. Data Science and Advanced Analytics (DSAA), 2016,
pp. 399–410.

[114] C.-H. Luo and C.-H. Shih, “Adaptive morse-coded single-switch communica-
tion system for the disabled,” Int. Journal of Bio-Medical Computing, vol. 41,
no. 2, pp. 99–106, 1996.

187

http://www.deeplearningbook.org
https://planspace.org/20170911-problems_with_imagenet_and_its_solutions/
https://planspace.org/20170911-problems_with_imagenet_and_its_solutions/
https://aws.amazon.com/blogs/apn/the-curse-of-big-data-labeling-and-three-ways-to-solve-it/
https://aws.amazon.com/blogs/apn/the-curse-of-big-data-labeling-and-three-ways-to-solve-it/
https://www.ntconcepts.com/the-hidden-challenges-of-ml-series-quadrant-2-data-preparation/
https://www.ntconcepts.com/the-hidden-challenges-of-ml-series-quadrant-2-data-preparation/

[115] C.-H. Yang, C.-H. Yang, L.-Y. Chuang, and T.-K. Truong, “The application
of the neural network on morse code recognition for users with physical
impairments,” Proc. Institution of Mechanical Engineers, Part H: Journal of
Engineering in Medicine, vol. 215, no. 3, pp. 325–331, 2001.

[116] C.-H. Yang, L.-Y. Chuang, C.-H. Yang, and C.-H. Luo, “Morse code applica-
tion for wireless environmental control systems for severely disabled individ-
uals,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 11, no. 4, pp. 463–469, Dec 2003.

[117] C. P. Ravikumar and M. Dathi, “A fuzzy-logic based morse code entry system
with a touch-pad interface for physically disabled persons,” in Proc. IEEE
Annu. India Conf. (INDICON), Dec 2016.

[118] T. W. King, Modern Morse Code in Rehabilitation and Education: New
Applications in Assistive Technology, 1st ed. Allyn and Bacon, 1999.

[119] R. Sheinker, “Morse code - apps on google play,” https://play.google.com/
store/apps/details?id=com.dev.morsecode&hl=en, Aug 2017.

[120] F. Bonnin, “Morse-it on the app store,” https://itunes.apple.com/us/app/
morse-it/id284942940?mt=8, Mar 2018.

[121] D. Hill, “Temporally processing neural networks for morse code recognition,”
in Theory and Applications of Neural Networks. Springer London, 1992, pp.
180–197.

[122] G. N. Aly and A. M. Sameh, “Evolution of recurrent cascade correlation
networks with distributed collaborative species,” in Proc. 1st IEEE Symp.
Combinations of Evolutionary Computation and Neural Networks, 2000, pp.
240–249.

[123] R. Li, M. Nguyen, and W. Q. Yan, “Morse codes enter using finger gesture
recognition,” in Proc. Int. Conf. Digital Image Computing: Techniques and
Applications (DICTA), Nov 2017.

[124] International Morse Code, Radiocommunication Sector of International
Telecommunication Union, Oct 2009, available at http://www.itu.int/rec/R-
REC-M.1677-1-200910-I/.

[125] R. M. Zur, Y. Jiang, L. L. Pesce, and K. Drukker, “Noise injection for train-
ing artificial neural networks: A comparison with weight decay and early
stopping,” Medical Physics, vol. 36, no. 10, pp. 4810–4818, Oct 2009.

188

https://play.google.com/store/apps/details?id=com.dev.morsecode&hl=en
https://play.google.com/store/apps/details?id=com.dev.morsecode&hl=en
https://itunes.apple.com/us/app/morse-it/id284942940?mt=8
https://itunes.apple.com/us/app/morse-it/id284942940?mt=8
http://www.itu.int/rec/R-REC-M.1677-1-200910-I/
http://www.itu.int/rec/R-REC-M.1677-1-200910-I/

[126] K. Chugg, A. Anastasopoulos, and X. Chen, Iterative Detection: Adaptiv-
ity, Complexity Reduction, and Applications. Springer Science & Business
Media, 2012, vol. 602.

[127] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” Proc. Int. Conf. Learning Representations (ICLR), 2019.

[128] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture search,”
in Proc. European Conf. Comp. Vision (ECCV), 2018, pp. 19–35.

[129] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in Proc. Int. Conf. Learning Rep-
resentations (ICLR), 2017.

[130] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for
image classifier architecture search,” in Proc. AAAI, 2019, pp. 4780–4789.

[131] L. Xie and A. Yuille, “Genetic cnn,” in Proc. Int. Conf. Comp. Vision
(ICCV), 2017, pp. 1388–1397.

[132] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolu-
tional neural networks,” arXiv e-print arXiv:1905.11946, 2019.

[133] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML for
model compression and acceleration on mobile devices,” in Proc. European
Conf. Comp. Vision (ECCV), 2018, pp. 784–800.

[134] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization
of machine learning algorithms,” in Proc. Advances in Neural Information
Processing Systems 25 (NeurIPS), 2012, pp. 2951–2959.

[135] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architec-
tures,” in Proc. 30th Int. Conf. Machine Learning (ICML), 2013.

[136] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA:
Combined selection and hyperparameter optimization of classification algo-
rithms,” in Proc. KDD, 2013, pp. 847–855.

[137] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE Conf. Comp.
Vision and Pattern Recognition, CVPR, 2018, pp. 8697–8710.

189

[138] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A.
Patwary, Prabhat, and R. P. Adams, “Scalable bayesian optimization using
deep neural networks,” arXiv e-print arXiv:1502.05700, 2015.

[139] K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, and M. Osborne, “Raiders of
the lost architecture: Kernels for bayesian optimization in conditional param-
eter spaces,” in NeurIPS workshop on Bayesian Optimization in Theory and
Practice, 2013.

[140] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, “Algorithms for hyper-
parameter optimization,” in Proc. Advances in Neural Information Process-
ing Systems 24 (NeurIPS), 2011, pp. 2546–2554.

[141] A. Brock, T. Lim, J. Ritchie, and N. Weston, “SMASH: One-shot model
architecture search through hypernetworks,” arXiv e-print arXiv 1708.05344,
2017.

[142] R. C. Mayo, D. Kent, and et al., “Reduction of false-positive markings
on mammograms: a retrospective comparison study using an artificial
intelligence-based CAD,” J. Digital Imaging, vol. 32, pp. 618–624, 2019.

[143] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles in
high-energy physics with deep learning,” Nature Communications, vol. 5, p.
4308, 2014.

[144] E. Santana and G. Hotz, “Learning a driving simulator,” arXiv e-print
arXiv:1608.01230, 2016.

[145] A. Paszke, S. Gross, F. Massa et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information Pro-
cessing Systems 32, 2019, pp. 8024–8035.

[146] S. Dey, “Sparse matrices in pytorch, part 1: Cpu runtimes,” https://
towardsdatascience.com/sparse-matrices-in-pytorch-be8ecaccae6.

[147] ——, “Sparse matrices in pytorch, part 2: Gpu runtimes,”
https://towardsdatascience.com/sparse-matrices-in-pytorch-part-2-gpus-
fd9cc0725b71.

[148] G. Huang, Y. Sun, and et al., “Deep networks with stochastic depth,” in
Proc. European Conf. Comp. Vision (ECCV), 2016, pp. 646–661.

[149] D. Page, “How to train your resnet,” https://myrtle.ai/how-to-train-your-
resnet/.

190

https://towardsdatascience.com/sparse-matrices-in-pytorch-be8ecaccae6
https://towardsdatascience.com/sparse-matrices-in-pytorch-be8ecaccae6
https://towardsdatascience.com/sparse-matrices-in-pytorch-part-2-gpus-fd9cc0725b71
https://towardsdatascience.com/sparse-matrices-in-pytorch-part-2-gpus-fd9cc0725b71
https://myrtle.ai/how-to-train-your-resnet/
https://myrtle.ai/how-to-train-your-resnet/

[150] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural archi-
tecture search using performance prediction,” in Proc. Int. Conf. Learning
Representations (ICLR), 2018.

[151] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian optimiza-
tion of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning,” arXiv e-print arXiv:1012.2599, 2010.

[152] F. Hutter and M. A. Osborne, “A kernel for hierarchical parameter spaces,”
arXiv e-print arXiv:1310.5738, 2013.

[153] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proc. British
Machine Vision Conference (BMVC), 2016, pp. 87.1–87.12.

[154] “Private communication with authors regarding proxylessNAS,” Mar 2020.

[155] H. Jin, “Comment on ‘not able to load best automodel after saving’ issue,”
https://github.com/keras-team/autokeras/issues/966#issuecomment-
594590617.

[156] I. M. Sobol, “Distribution of points in a cube and approximate evaluation
of integrals,” USSR Computational Mathematics and Mathematical Physics,
1967, 7:4, 86–112, vol. 7, no. 4, pp. 86–112, 1967, originally in Russian: Zh.
Vych. Mat. Mat.

[157] F. Rosenblatt, “The perceptron: A probabilistic model for information stor-
age and organization in the brain,” Psychological Review, pp. 65–386, 1958.

[158] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[159] D. Enskat, “AI index 2018: Europe – china – united states; AI out-
paces CS,” https://warrenenskat.com/ai-index-2018-europe-china-united-
states-ai-outpaces-cs/, Dec 2018.

[160] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi, “Scaling
for edge inference of deep neural networks,” Nature Electronics, vol. 1, no. 4,
pp. 216–222, 2018.

[161] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations
for deep learning in nlp,” arXiv e-print arXiv:1906.02243, 2019.

191

https://github.com/keras-team/autokeras/issues/966#issuecomment-594590617
https://github.com/keras-team/autokeras/issues/966#issuecomment-594590617
https://warrenenskat.com/ai-index-2018-europe-china-united-states-ai-outpaces-cs/
https://warrenenskat.com/ai-index-2018-europe-china-united-states-ai-outpaces-cs/

	Epigraph
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Abstract
	Related Publications and Software
	Introduction
	Neural networks
	Complexity of neural networks
	Automated Machine Learning

	Dissertation Contributions
	Pre-defined sparsity
	Automated Machine Learning
	Dataset Engineering

	Dissertation Organization

	Background
	Mathematical Notation
	Notation and Basic Operations for Neural Networks
	Feedforward (FF)
	Backpropagation (BP)
	Update (UP)

	Training and Inference
	Convolutional neural networks
	Recurrent neural networks

	Pre-Defined Sparsity
	Related Work
	Structured Pre-defined sparsity
	Motivation and Preliminary Examples
	Structured Constraints
	Modifications to Neural Network Operations

	Performance Results, Trends and Guidelines
	Datasets and Experimental Configuration
	Dataset Redundancy
	Individual junction densities
	`Large and sparse' vs `small and dense' networks

	Summary

	Hardware Architecture
	Junction pipelining and Operational parallelism
	Memory organization
	Clash-freedom
	Batch size
	Architectural Constraints
	Special Case: Processing a FC junction
	FPGA Implementation
	Network Configuration and Training Setup
	Bit Width Considerations
	Implementation Details

	Summary

	Connection Patterns
	Biadjacency Matrices
	Clash-free memory access patterns
	Types of memory access patterns

	Comparison between classes of Pre-defined Sparsity
	Comparison to other methods of sparsity
	Metrics for Connection Patterns
	Window biadjacency matrices
	Scatter

	Summary

	Dataset Engineering
	Generating Algorithm
	Variations and Difficulty Scaling

	Neural Network Results and Analysis
	Results
	Results for Pre-Defined Sparse Networks

	Metrics for Dataset Difficulty
	Goodness of the Metrics
	Limitations of the Metrics

	Summary

	Automated Machine Learning
	Motivation and Related Work
	Overview of Deep-n-Cheap (DnC)
	Our Approach
	Three-stage search process
	Bayesian Optimization

	Experimental Results
	Datasets and loading
	Convolutional Neural Networks
	Multilayer Perceptrons

	Comparison to related work
	Investigations and insights
	Search transfer
	Greedy strategy
	Bayesian optimization vs random and grid search
	Ensembling
	Changing hyperparameters of Bayesian Optimization
	Adaptation to various platforms

	Summary

	Conclusion
	Summary
	Final Word

	References

