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Pre-defined Sparsity

* Reduce complexity of NNs

* Guidelines for designing sparse NNs
e Hardware architecture for on-device training and inference

Key Automated Machine Learning: Deep-n-Cheap

. : * Target performance and training complexity
contributions

e Benchmark and custom datasets, CNNs and MLPs

* Insights into search process

Dataset Engineering

e Family of synthetic datasets

» Dataset difficulty metrics
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Deep Learning

Machine Learning
Neural Networks

Smart Systems
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A Quick Primer on Neural Networks (NN101)
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A Quick Primer on Neural Networks (NN101)
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A Quick Primer on Neural Networks (NN101)
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TRAINING

Learn network parameters — weights




A Quick Primer on Neural Networks (NN101)
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TRAINING

Learn network parameters — weights

l Backgrogaﬁation




A Quick Primer on Neural Networks (NN101)

TRAINING

Learn network parameters — weights




NNs can be used for classification
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TESTING / INFERENCE Measure accuracy performance — %

Use learned network parameters of correctly classified test samples



Types of NNs — Multilayer Perceptron (MLP)
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Fully connected (FC) — every node connects to every adjacent node
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Types of NNs — Convolutional Neural Network (CNN)

Filter / Kernel
/ ™
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Convolution Pooling Batch Dropout

(Downsampling)  Normalization

technically it’s correlation...
but since when do engineers
bother about math?
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The Complexity Conundrum...
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... and the Design Conundrum

* Deep neural networks have a lot of hyperparameters

?

* How many layers? Architecture
* How many neurons? Hyperparameters
* Learning rate Training
* Batch size Hyperparameters

e and more...

* Our understanding of NNs is at best vague, at worst, zero!

Sourya Dey University of Southern California



The big guestion my research aims to answer

Can we reduce the storage and computational (which
translate to temporal, financial and environmental)
burden of deploying NNs, particularly the training
phase, while minimizing performance degradation?

MIT Technology Review Strubell 2019

Artificial intelligence / Machine learning

Training a single Al model
can emit as much carbon
as five cars in their
lifetimes

Deep learning has a terrible carbon footprint.
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https://github.com/souryadey/predefinedsparse-nnets

Motivation behind pre-defined sparsity
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In a FC MLP network, most weights are small in magnitude after training
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Pre-defined Sparsity

Pre-define a sparse connection
pattern prior to training

Use this sparse network for both
training and inference

Reduced training
and inference
complexity

4)

Fixed in-, out-degrees
for every node

4,
dOUt — (17 2) Structured Constraints:
2)

= 50%

— 33% Overall Density

8 x 1
P1= g4
—_ 8—
pnet—32_

University of Southern California

- 16 compared to FC
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Designing pre-defined sparse networks

A pre-defined sparse connection
pattern is a hyperparameter to be
set prior to training

@\)
(

L

Find trends and guidelines to optimize
pre-defined sparse patterns

VLY
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complicated representations => They need to be denser

Latter junctions (closer to the output) learn higher-order, more

1. Individual junction densities

Sourya Dey




Results

Each curve keeps p, fixed and
varies p_., by varying p,

For the same p, .., p, > P,
improves performance

Mostly similar trends observed
for deeper networks

Sourya Dey
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2. Dataset redundancy

0 5 10 15 20 25

: MNIST
High redundancy defgult

featur

MNIST [red
to 200 fea

Wider|sp

~1.0-0.50.0 0.5 1.0  —1.0-0.50.0 0.5 1.0
Less redundancy => Less

soua bey e sparsification possible  *




Results

Reducing redundancy leads to
increased performance
degradation on sparsification

Pre-defined sparse design is
problem-dependent

Sourya Dey
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(b) Reuters

Original: 2000 tokens
Nnet = (2000, 50, 50)

Tokens reduced to 400
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3. ‘Large sparse’ vs ‘small dense’ networks

A sparser network with more .
hidden nodes will outperform

a denser network with less

hidden nodes, when both have

same number of weights

ern California 27
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Networks with same number of parameters go from bad

to good as #nodes in hidden layers is increased
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4. Regularization — Why does pre-defined sparsity work?

C(w) = Co(w) + A ||Jwlf3

\ 4
Regularized cost

\ 4
Original unregularized

cost (like cross-entropy)

Regularization term

Sourya Dey

v

Pre-defined sparse networks need
smaller A (as determined by validation)

Overall Density

100 % 1.1 x 104
40 % 5.5x10-5
11 % 0

Example for MNIST 2-junction networks

Pre-defined sparsity reduces the
overfitting problem stemming from
over-parametrization in big networks

University of Southern California 29



Quick Overview of Hardware Architecture

Slow
Training

Flexibility

Degree of parallelism (z) = Number of weights

processed in parallel in a junction

Hardware
Intensive

Sourya Dey University of Southern California 30



Quick Overview of Hardware Architecture

Degree of parallelism (z) = Number of weights
processed in parallel in a junction

Connections designed for clash-free memory accesses
to prevent stalling

Sourya Dey University of Southern California
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Quick Overview of Hardware Architecture

Degree of parallelism (z) = Number of weights
processed in parallel in a junction

Connections designed for clash-free memory accesses
to prevent stalling

Clash-free pre-defined sparsity leads to no
performance degradation

Sourya Dey University of Southern California
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Quick Overview of Hardware Architecture

Degree of parallelism (z) = Number of weights
processed in parallel in a junction

Connections designed for clash-free memory accesses
to prevent stalling

Clash-free pre-defined sparsity leads to no
performance degradation

Operational parallelization and junction pipelining

Sourya Dey University of Southern California 33




Quick Overview of Hardware Architecture

Degree of parallelism (z) = Number of weights
processed in parallel in a junction

Connections designed for clash-free memory accesses
to prevent stalling

Clash-free pre-defined sparsity leads to no
performance degradation

Operational parallelization and junction pipelining

Prototype implemented on FPGA

Sourya Dey University of Southern California 34



Quick Overview of Hardware Architecture

Degree of parallelism (z) = Number of weights
processed in parallel in a junction

Connections designed for clash-free memory accesses
to prevent stalling

Clash-free pre-defined sparsity leads to no
performance degradation

Operational parallelization and junction pipelining

Prototype implemented on FPGA

Transferred to and currently being developed by team
SAPIENT, in collaboration with DTRA and USC ISI.

Sourya Dey University of Southern California 35



L 4

Automated
Machine Learning :

Deep-n-Cheap

://github.com/souryadey/deep-n-chea


https://github.com/souryadey/deep-n-cheap

AutoML (Automated Machine Learning)

* Software frameworks that make design decisions

e Given a problem, search for NN models

A< AutoKeras ©LUON

Jin 2019 — Auto-Keras AWSLabs 2020 — AutoGluon

sAutoML. org

BIFreiburg-Hannover

Mendoza 2018 — Auto-PyTorch




Our Work

DsaC Deep-n-Cheap

Low Complexity AutoML framework

Framework Architecture search space Iraining | Adjust m?del
hyp search| complexity
Auto-Keras |Only pre-existing architectures No No
AutoGluon |Only pre-existing architectures Yes No
Auto-PyTorch Customizable by user Yes No
Deep-n-Cheap Customizable by user Yes Penalize t¢, IV,

Sourya Dey

University of Southern California

Reduce training complexity

Target custom datasets and
user requirements

Supports CNNs and MLPs

t,, = Training time / epoch
N,=# Trainable parameters

38



Search Objective

Optimize performance and complexity

Modified loss function: f( NN Config x ) = Iog(fp +w *f,)

Example config x:
[#layers, #channels] = [3, (29,40,77)] w_is like
C

fp = 1 - (Best Validation Accuracy) regularization

f.=Normalized t, or N,

= ttr(config) / ttr(base“ne) Quick to train Good performance
Sacrifice performance Slow to train
Slow search process

Sourya Dey University of Southern California 39



Three-stage search process

Core architecture hyps

CNNs:
num conv layers
num channels
MLPs:
num hidden layers
num nodes

Advanced arch. hyps
CNNs:

1) Downsampling style
2) Batch normalization
3) Dropout

4) Shortcuts

MLPs:

1) Dropout

Training hyps

Learning rate
Weight decay
Batch size

Stage 1: Core
Architecture Search

Stage 2: Advanced
Architecture Search

Stage 3: Training
Hyperparameter Search

Final results




Three-stage search process

|
: Stage 1: Core : Stage 2: Advanced : Stage 3: Training |
| Architecture Search | Architecture Search | Hyperparameter Search| | Final results
---------- it 1ttt et
Core architecture hyps | | I
CNN: | Searched using !
num conv layers | i |
num channels | Bayesian |
MLPs: | optimization |
num hidden layers
num nodes I I
__________ P X
Advanced arch. hyps ' l
CNN: ' '
1) Downsampling style l : '
2) Batch normalization | | Fixed to I
3) Dropout I presets I
4) Shortcuts | |
MLPs: | I
1) Dropout | |
__________ I
Training hyps I I
Learning rate I Fixed to I
Weight decay | presets |
Batch size I |
' ]



Three-stage search process

| | I — |
| Stage 1: Core | Stage 2: Advanced | Stage 3: Training |
| Architecture Search | Architecture Search | [Hyperparameter Search| Final results
—————————— - - -"-"-"-"-"--T-"-"-"-"-""-"=-""-""-"-"7T~-~ -~~~/ =/ =/"/=/="==7
Core architecture hyps I | |
CNNs: | g : I l
earched usin :
num conv layers | Bavesian 9 | Fixedto Stage |
num channels | 2yesia | 1 searchresults |
MLPs: | optimization | |
num hidden layers | | |
num nodes
__________ S IS &
Advanced arch. hyps l l :
CNNs: : : |
1) Downsampling style _ Multiple grid
2) Batch normalization | | Fixed to | seargheg in '
3) Dropout l presets ' '
4) Shortcuts | | sequence |
MLPs: | | |
1) Dropout | I I
--------- i e
Training hyps I | |
Learning rate | Fixed to | Fixed to I
Weight decay | presets | presets |
Batch size I I I
' ] '



Three-stage search process

Core architecture hyps

CNNs:
num conv layers
num channels
MLPs:
num hidden layers
num nodes

Advanced arch. hyps
CNNs:
1) Downsampling style
2) Batch normalization
3) Dropout
4) Shortcuts
MLPs:
1) Dropout

Training hyps

Learning rate
Weight decay
Batch size

Stage 1: Core
Architecture Search

Stage 2: Advanced

Architecture Search

Stage 3: Training

Hyperparameter Search

Searched using
Bayesian
optimization

Fixed to
presets

Fixed to
presets

Fixed to Stage
1 search results

Multiple grid
searches in
sequence

Fixed to
presets

Fixed to Stage
1 search results

Fixed to Stage
2 search results

Searched using
Bayesian
optimization

Final results

Stage 1
search
results

Stage 2
search
results

Stage 3
search
results

mIIC--OoOm=-IOXI>

+



Input Input

Examples
of Stage 2

Full shortcuts (left)

BN =0.5
Half shortcuts (right)

AR

-



Bayesian Optimization Workflow  model function f

Sample some initial data X,. , and find (X, ,)

Form prior to approximate f. This is a Gaussian process with i, ., Z

nlxnl
Repeat for n2 steps:
« Sample new points X', .

« Find expected improvement EI(x’) for each new point and choose x .., = argmax EI(x’)

 Form posterior to approximate f :

_toX Total configs explored: n1 + n2*n3

« Find f(x,,,) Total configs trained: n1 + n2

o Augment X Lnl+1l

o Augment u‘nlxl to u‘(n1+1)X1 ’ zn]_xnl to z(n1+1)X(n1+1)

Finally, return best f and corresponding best x

Sourya Dey University of Southern California 45



Gaussian process (GP)

A collection of random variables such
that any subset of them forms a multi- f (Xlzn) ™~ N ( 22 > )
dimensional Gaussian random vector

Sourya Dey University of Southern California 46



Covariance kernel —
Similarity between NN

configs

Pre-decided

Config i

Min channels = 16
Max channels = 64
omega=3,r=1

Individual
Distance

Configj

50 channels

36 channels

Min channels = 16
Max channels = 128
omega=3,r=1/2

v

v

80 channels

61 channels

Layer 3||Layer 2||Layer 1

Min channels = 16
Max channels = 256
omega=3,r=1/3

v

Computed

Distance = 0.875

Distance = 1.236

No 3rd layer

107 channels

Distance = 3 (i.e. max)

47



C.ov.anqnce kernel — ndvidual g (o ) =
Similarity between NN

I Individual : :
configs namidedl o (zik, Tjk)

Pre-decided Configi Configj Computed
Min channels = 16 :
Max channels = 64 50 channels 36 channels Distance = 0.875
Kernel = 0.682
omega=3,r=1 ‘ l
Min channels = 16 .
Max channels = 128 80 channels 61 channels Distance = 1.236

Kernel = 0.466

omega=3,r=1/2

Min channels = 16
Max channels = 256 No 3rd layer 107 channels
omega=3,r=1/3

Distance = 3 (i.e. max)
Kernel = 0.01 (i.e. min)

Layer 3||Layer 2||Layer 1




Covariance kernel —
Similarity between NN

Config i

Individual
Distance

Individual
Kernel

Complete
Kernel

Configj

50 channels

36 channels

v

v

80 channels

61 channels

Pre-decided
-
- Min channels = 16
q>’. Max channels = 64
S omega=3,r=1
? Min channels = 16
°>’, Max channels = 128
S omega =3, r=1/2
? Min channels = 16
q>’, Max channels = 256
S omega =3, r=1/3

v

No 3rd layer

107 channels

o (xika ajjk)

o (ZEZ', :13]-)

Computed

Distance = 0.875
Kernel = 0.682

Distance = 1.236
Kernel = 0.466

Distance = 3 (i.e. max)
Kernel = 0.01 (i.e. min)

Assuming all {s} are equal, final kernel value = 0.386

Convex
combination

49
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Expected Improvement (El)

e Let f* be the minimum of all observed values so far

* How much can a new point x improve:
o If f(x)>f*, Imp(x)=0
e Else, Imp(x) = f*-f(x)

 El(x) = Expectation [ max(f*-f(x),0) ]

Bl(@) = (1" - P (T2 v op (54

O

Standard normal cdf =P, pdf = p

Don’t need to evaluate f(x) to find El(x)

Sourya Dey University of Southern California 50



Data loader and augmentation considerations

Using data pre-loaded from npz format Using Pytorch data loaders

Entire dataset is in memory Uses generators to not burden memory
|
\ 4

data = np.load(‘mnist.npz’)

xtr, ytr = data[ ‘xtr’], data[ ‘ytr’]

for i in numbatches:
inputs = xtr[i*batch_size : (i+l1l)*batch_size]
labels = ytr[i*batch_size : (i+l)*batch_size]

A 4

data = torchvision.datasets.MNIST(root = data_folder, train = True, download = False, transform = transforms.ToTensor())
train_loader = torch.utils.data.DatalLoader(data['train'], batch_size = batch_size, shuffle = True, num_workers = 4,
pin_memory = True)
for batch in train_loader:
inputs, labels = batch

npz is faster, data loaders are more versatile

Sourya Dey University of Southern California 51




CNN Results

Complexity Penalty =
Training time / epoch

AWS p3.2xlarge
with 1 V100 GPU

We are not penalizing
this, but it's correlated

Performance-
complexity
tradeoff

CIFAR-10 CIFAR-10 CIFAR-100 Fashion MNIST
w/ augmentation w/o augmentation w/ augmentation w/ augmentation
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CNN Results

Complexity Penalty =
Training time / epoch

AWS p3.2xlarge
with 1 V100 GPU

We are not penalizing
this, but it's correlated

Performance-
complexity
tradeoff

CIFAR-10
w/ augmentation

CIFAR-10
w/o augmentation

CIFAR-100
w/ augmentation

Fashion MNIST
w/ augmentation

9% 94 74 9%
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MLP Results
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Running Deep-n-Cheap

How to run?

* Install Python 3
* Install Pytorch

$ pip install sobol seq tqdm

$ git clone https://github.com/souryadey/deep-n-cheap.git
$ cd deep-n-cheap
$ python main.py

For help:

$ python main.py -h

Sourya Dey

University of Southern California

"

Datasets (including custom)

Set dataset to either:

* --dataset=torchvision.datasets.<dataset> . Currently

supported values of <dataset> = MNIST, FashionMNIST,
CIFAR10, CIFAR100

* -.dataset='<dataset>.npz' , where <dataset> iSa .npz
file with 4 keys:
o xtr :numpy array of shape (num_train_samples,
num_features...), example (50000,3,32,32) or
(60000,784). Image data should be in channels_first

format.
o ytr : numpy array of shape (num_train_samples,)
o xte : numpy array of shape (num_test_samples,
num_features...)
o yte : numpy array of shape (num_test_samples,)

« Some datasets can be downloaded from the links in
dataset_links.txt . Alternatively, define your own

custom datasets. -



Comparison (CNNs on CIFAR-10)

Framework Additional |Search cost Best model found from search
settings (GPU hrs) | Architecture |ti, (sec)|Batch size|Best val acc (%)
Proxyless NAS | Proxyless-G 96 537 conv layers| 429 64 93.22
Auto-Keras Default run 14.33 Resnet-20 v2 33 32 74.89
AutoGluon Default run 3 Resnet-20 vl 37 64 88.6
Extended run 101 Resnet-56 v1 46 64 91.22
‘tiny cs’ 6.17 30 conv layers 39 64 87.81
Auto-Pytorch ——phi=5 6.13 | 41 conv layers | 31 106 86.37
we =0 29.17 14 conv layers 10 120 93.74
Deep-n-Cheap we. = 0.1 19.23 8 conv layers 4 459 91.89
we = 10 16.23 4 conv layers 3 256 83.82

Penalizes inference
complexity, not training

Auto Keras and Gluon don’t support getting \
final model out, so we compared on best val a
found during search instead of final test acc




Comparison (MLPs)

Framework Additional [Search cost Best model found from search
settings | (GPU hrs)  MLP layers| N, |ty (sec)|Batch size|Best val acc (%)
Fashion MNIST
‘tiny cs’ 6.76 50 27.8M| 19.2 125 91
Auto-Pytorch |‘medium cs’ 5.53 20 3.5M | 8.3 184 90.52
‘full cs’ 6.63 12 122k | 5.4 173 90.61
Deep-n-Cheap| w, =0 0.52 3 263k | 0.4 272 90.24
(penalize ti,) | w. = 10 0.3 1 7.9k | 0.1 511 84.39
Deep-n-Cheap| w. =0 0.44 2 317k | 0.5 156! 90.53
(penalize Np)| w, = 10 0.4 1 7.9k | 0.2 256 86.06
Reuters RCV1
‘tiny cs’ 7.22 38 19.7M| 39.6 125 88.91
Auto-Pytorch ‘mediim 5’| 6.47 11 [11.2M] 223 | 337 90.77
Deep-n-Cheap| w. =0 1.83 2 1.32M| 0.7 503 91.36
(penalize ti,) | w.=1 1.25 1 100k | 0.4 512 90.34
Deep-n-Cheap| w. =0 2.22 2 1.6M| 0.6 512 91.36
(penalize Np)| w.=1 1.85 1 100k | 5.54 33 90.4




Takeaway

WAIL.

We may not need
very deep networks!

Also see Zagoruyko 2016 — WRN

Sourya Dey University of Southern California 60



Search transfer

Can a NN architecture found after stages 1 and 2 on
dataset A be applied to dataset B after running Stage
3 training hyperparameter search?

How does it compare to native search on dataset B?

Can architectures generalize?

Stage 1
and 2 on
dataset B

Native

'

Stage 3 on
dataset B

l

Final
Config

Stage 1
and 2 on

datalset A

Search
Transfer

v

Stage 3 on
dataset B

l

Final
Config

_

Compare



Search
transfer
results

Transferring from
CIFAR outperforms
native FMINIST
(probably due to
more params)

Training times
mostly the same

Sourya Dey

Test accuracy (%)

ty (sec)

30 1
25 1
20 1
15 1
10
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What about a non-greedy search?

Stage 1 X1

Stage 2 x1 X2 x3

Stage 3 x11 x12 «x13 X21 x22 x23 x31 x32 x33



Search objective f
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Choosing initial points in Bayesian optimization
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Sobol sampling
Like grid search

Better for more dimensions

65




BO vs random and grid search (30 points each)

Search objective f
I

-1.10

-1.07 -

—1.09 -

we=20
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we = 0.01

-1.06

—0.86 1

—0.87 1
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—0.89 1

—0.90

—0.91 1

—0.92

Purely random search: 30 prior

Purely grid search (Sobol): 30 prior

-0.63

—0.60 1

—0.61 1

—0.62 1

we=10
0.15 1
0.10 1
0.05 1
0.00 - - -
—0.05 I

Balanced BO: 15 prior + 15 steps
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Multiple models vote on final test samples

Ensembling

CIFAR-10 augmented, n=5 CIFAR-10 unaugmented, n =3

Slight increases in performance at the cost of large increases in complexity

Sourya Dey

University of Southern California
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DNnC releases

‘ Latest release|

S v1.0

-O- bb30@e55

Verified

Compare v

Sourya Dey

First release il

a souryadey released this 21 days ago - 7 commits to master since this release

Version used for obtaining results for the paper -- S. Dey, S. C. Kanala, K. M. Chugg and P. A. Beerel, “Deep-

n-Cheap: An Automated Search Framework for Low Complexity Deep Learning”, submitted to ECML-PKDD
2020.

¥ Assets 2

Source code (zip)

Source code (tar.gz)

Extension to segmentation and RNNs coming soon

University of Southern California 68
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Dataset

Engineering

rse-dataset



https://github.com/souryadey/morse-dataset

Data, data, everywhere,
Not quality enough to use

Real world data has challenges: &N

> Too few samples 132 0.05 1200
> Incorrect labeling 109 A

o _ 0.78 B+ 1400
> Missing entries 114 1100

Synthetic data is generated using computer algorithms
> Very large quantities can be generated

> Mimic real-world data as desired

> Classification difficulty tweaking

Sourya Dey University of Southern California 70



Morse Code
Datasets

Morse Code is a system of
communication where
letters, numbers and
symbols are encoded
using dots and dashes

Example:

+ ® - O o

Sourya Dey

Step 1:

Frame length: 64
Dot: 1-3
Dash: 4-9
Intermediate space: 1-3
Leading spaces: None
Trailing spaces: Remaining at end

University of Southern California

<+—— 64-wide input frame —»

AT |

2

1 3 3 2 38
Codeword Length = 26. Remaining spaces = 38

71



Morse Code
Datasets

Morse Code is a system of
communication where
letters, numbers and
symbols are encoded
using dots and dashes

Example:

+ ® - O o

Sourya Dey

Step 1:

Frame length: 64
Dot: 1-3
Dash: 4-9
Intermediate space: 1-3
Leading spaces: None
Trailing spaces: Remaining at end

}

Step 2:

Expected value range = [0,16]

Dot, dash = Normal(12,4/3)
Space =0

University of Southern California

<+—— 64-wide input frame —»

AT |

2

1 3 3 2 38
Codeword Length = 26. Remaining spaces = 38

o 000 00,0 0,0 0,0,0,...x38

lmlgfemfe

ITATS

12,12,9,12,13,14,10  11,13,14,12,12

72



Morse Code
Datasets

Morse Code is a system of
communication where
letters, numbers and
symbols are encoded
using dots and dashes

Example:

+ ® - O o

Sourya Dey

Step 1:

Frame length: 64
Dot: 1-3
Dash: 4-9
Intermediate space: 1-3
Leading spaces: None
Trailing spaces: Remaining at end

}

Step 2:

Expected value range = [0,16]

Dot, dash = Normal(12,4/3)
Space =0

!

Step 3:

Additive Noise = Normal(0,0)
(For this case, 0=1)

University of Southern California

<+—— 64-wide input frame —»

AT |

1 3 3 2 38
Codeword Length = 26. Remaining spaces = 38

0,0,0,...x38

T

o 000 00,0 0,0

ITETE

12,12,9,12,13,14,10  11,13,14,12,12

1 0,10 2,01 0,0 0,2,1,0,...

\IffT

13,12 T 13,9 11

12,11,8,14,16,14,11 10,13,12,14,11
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Variations and Difficulty Scaling

I Dots and dashes [ Spaces [ Confusion
> More noise g Noise o = 1 Noise o = 2
> Leading and trailing spaces
> Confusing dashes with dots and spaces E E
> Dilating frame to size 256 ) -
> Increasing #samples in dataset \ —,

Value Value

80

au o N
o © ©

/

Percentage Accuracy
S
o

Probability
Probability

30
20
10

0

1/8 1/4 1/2 1 2 4 8
Size Scale x for Dataset 'Morse Size x'

—8-Test Accuracy after 30 epochs
—®—(Train Accuracy - Test Accuracy) after 30 epochs Value Value
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Neural network performance (3-layer MLP)
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Dash Length=3-9
Tunable dataset difficulty leads to a variety of benchmarks °
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Metrics to characterize dataset difficulty
I

v Minimum distance
Probability of the > between centroids of mth
mth class occurring class and any other class
Gaussian Q-function < —, Average variance across

all features in mth class
_@ L \
=<Tof o . .
o o Distance between centroids
o of mth and jth classes
Cm — €y ||1 \-
#classes A/Vthresh L i ' ( Ny - 0.05/
m=1 j3=1 |
1£m » f#ifeatures
Sourya Dey 76

High V values => More difficult



Goodness of the Metrics

Pearson’s correlation coefficient between

Metric - . metric and test set classification accuracy of
Morse code datasets of varying difficulty
Viower | -0.59 (negative because metrics indicate difficulty)
Vipper | -0.64
Viis -0.63 :
dist Metrics can be used to understand the
Vihresn | -0.64 inherent difficulty of the classification

problem on a dataset before applying
any learning algorithm
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