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Key 
contributions

Pre-defined	Sparsity
• Reduce	complexity	of	NNs	
• Guidelines	for	designing	sparse	NNs	
• Hardware	architecture	for	on-device	training	and	inference

Automated	Machine	Learning:	Deep-n-Cheap
• Target	performance	and	training	complexity	
• Benchmark	and	custom	datasets,	CNNs	and	MLPs	
• Insights	into	search	process

Dataset	Engineering
• Family	of	synthetic	datasets	
• Dataset	difficulty	metrics

Sourya	Dey �2
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Introduction and 
Background  

 



Deep	Learning

Artificial	
Intelligence

Smart	Systems

Machine	Learning	
Neural	Networks



Nodes	/	
Neurons	
in	a	layer

Edges	/	Connections	
in	a	junction

A Quick Primer on Neural Networks (NN101)
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Types of NNs – Multilayer Perceptron (MLP)

Fully	connected	(FC)	–	every	node	connects	to	every	adjacent	node
Sourya	Dey �13
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Types of NNs – Convolutional Neural Network (CNN)

1 -2 2 3 -1 -3

0 1 1 -4 -2 4

-1 -3 1 4 -2 0

0 0 0 4 -3 2

0 2 1 1 1 0

0 1 3 -1 0 -3

1 0 1

0 1 0

1 0 1

4 3 -4 2

-2 2 0 4

1 4 5 2

5 5 1 3

4 4

5 5

2 1

-1 0

1

-1

Convolution Pooling	
(Downsampling)

Batch	
Normalization

Dropout

Filter	/	Kernel

technically	it’s	correlation…	
but	since	when	do	engineers	
bother	about	math?

Sourya	Dey �14

Channels



The Complexity Conundrum…

Training	can	take	weeks	on	CPU	
Cloud	GPU	resources	are	expensive

Modern	neural	networks	suffer	from	parameter	explosion

He	2016



Architecture 
Hyperparameters

Training 
Hyperparameters

• Deep	neural	networks	have	a	lot	of	hyperparameters	
• How	many	layers?	
• How	many	neurons?	
• Learning	rate	
• Batch	size	
• and	more…	

• Our	understanding	of	NNs	is	at	best	vague,	at	worst,	zero!

… and the Design Conundrum

Sourya	Dey University	of	Southern	California �16



The big question my research aims to answer

Can	we	reduce	the	storage	and	computational	(which	
translate	to	temporal,	financial	and	environmental)	
burden	of	deploying	NNs,	particularly	the	training	
phase,	while	minimizing	performance	degradation?	

Strubell	2019



Pre-Defined Sparsity
https://github.com/souryadey/predefinedsparse-nnets

https://github.com/souryadey/predefinedsparse-nnets
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Motivation behind pre-defined sparsity

In	a	FC	MLP	network,	most	weights	are	small	in	magnitude	after	training
Sourya	Dey �19
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Pre-defined Sparsity

Pre-define	a	sparse	connection	
pattern	prior	to	training	
Use	this	sparse	network	for	both	
training	and	inference

Overall	Density	
compared	to	FC

Structured	Constraints:	
Fixed	in-,	out-degrees	
for	every	node

Reduced	training	
and	inference	
complexity

Sourya	Dey �20
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Pre-defined sparsity performance on MLPs

Sourya	Dey �21

Starting	with	only	20%	
of	parameters	reduces	
test	accuracy	by	just	1%

MNIST	handwritten	digits

Reuters	news	articles

TIMIT	phonemes

CIFAR	images

Morse	symbols
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Designing pre-defined sparse networks

A	pre-defined	sparse	connection	
pattern	is	a	hyperparameter	to	be	

set	prior	to	training

Find	trends	and	guidelines	to	optimize	
pre-defined	sparse	patterns

?
??
? ?

Sourya	Dey �22
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1. Individual junction densities

Latter	junctions	(closer	to	the	output)	learn	higher-order,	more	
complicated	representations	=>	They	need	to	be	denser

Sourya	Dey �23

Input

Output
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Each	curve	keeps	𝜌2	fixed	and	
varies	𝜌net	by	varying	𝜌1	

For	the	same	𝜌net	,	𝜌2	>	𝜌1	
improves	performance

Sourya	Dey �24

Mostly	similar	trends	observed	
for	deeper	networks

Results
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High	redundancy

Low	
redundancy

2. Dataset redundancy

MNIST	with	
default	784	
features

MNIST	reduced	
to	200	features	
Wider	spread

Less	redundancy	=>	Less	
sparsification	possibleSourya	Dey �25
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Reducing	redundancy	leads	to	
increased	performance	
degradation	on	sparsification	

Pre-defined	sparse	design	is	
problem-dependent

Sourya	Dey �26

Results
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3. ‘Large sparse’ vs ‘small dense’ networks

A	sparser	network	with	more	
hidden	nodes	will	outperform	
a	denser	network	with	less	
hidden	nodes,	when	both	have	
same	number	of	weights

Sourya	Dey �27
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Results
Networks	with	same	number	of	parameters	go	from	bad	
to	good	as	#nodes	in	hidden	layers	is	increased

Sourya	Dey �28



University	of	Southern	California

4. Regularization – Why does pre-defined sparsity work?

Sourya	Dey �29

Regularized	cost

Original	unregularized	
cost	(like	cross-entropy)

Regularization	term

Pre-defined	sparse	networks	need	
smaller	λ	(as	determined	by	validation)

Pre-defined	sparsity	reduces	the	
overfitting	problem	stemming	from	
over-parametrization	in	big	networks

Overall	Density λ

100	% 1.1	x	10-4

40	% 5.5	x	10-5

11	% 0

Example	for	MNIST	2-junction	networks
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Slow	
Training

Hardware	
Intensivez

Flexibility

Degree	of	parallelism	(z)	=	Number	of	weights	
processed	in	parallel	in	a	junction

Quick Overview of Hardware Architecture

Sourya	Dey �30



z	=	3
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Connections	designed	for	clash-free	memory	accesses	
to	prevent	stalling

Quick Overview of Hardware Architecture

Sourya	Dey �31

Degree	of	parallelism	(z)	=	Number	of	weights	
processed	in	parallel	in	a	junction



z	=	3
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Clash-free	pre-defined	sparsity	leads	to	no	
performance	degradation

Quick Overview of Hardware Architecture

Sourya	Dey �32

Degree	of	parallelism	(z)	=	Number	of	weights	
processed	in	parallel	in	a	junction

Connections	designed	for	clash-free	memory	accesses	
to	prevent	stalling



Input

University	of	Southern	California

Operational	parallelization	and	junction	pipelining

Quick Overview of Hardware Architecture

Sourya	Dey �33

Degree	of	parallelism	(z)	=	Number	of	weights	
processed	in	parallel	in	a	junction

Connections	designed	for	clash-free	memory	accesses	
to	prevent	stalling

Clash-free	pre-defined	sparsity	leads	to	no	
performance	degradation
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Prototype	implemented	on	FPGA

Quick Overview of Hardware Architecture

Sourya	Dey �34

Degree	of	parallelism	(z)	=	Number	of	weights	
processed	in	parallel	in	a	junction

Connections	designed	for	clash-free	memory	accesses	
to	prevent	stalling

Clash-free	pre-defined	sparsity	leads	to	no	
performance	degradation

Operational	parallelization	and	junction	pipelining
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Transferred	to	and	currently	being	developed	by	team	
SAPIENT,	in	collaboration	with	DTRA	and	USC	ISI.

Quick Overview of Hardware Architecture

Sourya	Dey �35

Degree	of	parallelism	(z)	=	Number	of	weights	
processed	in	parallel	in	a	junction

Connections	designed	for	clash-free	memory	accesses	
to	prevent	stalling

Clash-free	pre-defined	sparsity	leads	to	no	
performance	degradation

Operational	parallelization	and	junction	pipelining

Prototype	implemented	on	FPGA



Automated 
Machine Learning :  

Deep-n-Cheap
https://github.com/souryadey/deep-n-cheap

https://github.com/souryadey/deep-n-cheap


AutoML (Automated Machine Learning)

• Software	frameworks	that	make	design	decisions	
• Given	a	problem,	search	for	NN	models

Jin	2019	–	Auto-Keras AWSLabs	2020	–	AutoGluon

Mendoza	2018	–	Auto-PyTorch
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Our Work

ttr	=	Training	time	/	epoch 
Np	=	#	Trainable	parameters

Reduce	training	complexity 

Target	custom	datasets	and	
user	requirements	 

Supports	CNNs	and	MLPs

Sourya	Dey �38
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wc

Search Objective

Optimize	performance	and	complexity

Modified	loss	function:	f(	NN	Config	x	)	=	log(	fp	+	wc*fc	)

Good	performance	
Slow	to	train	

Slow	search	process

Quick	to	train	
Sacrifice	performance

wc	is	like	
regularizationfp	=	1	-	(Best	Validation	Accuracy) 

fc	=	Normalized	ttr	or	Np 
				=	ttr(config)	/	ttr(baseline)

Example	config	x: 
[#layers,	#channels]	=	[3,	(29,40,77)]

Sourya	Dey �39



Three-stage search process



Three-stage search process



Three-stage search process



Three-stage search process A
R
C
HI
T
E
C
T
U
R
E 

+ 

T
R
AI
NI
N
G



Examples 
of Stage 2

BN	=	0.5 Full	shortcuts	(left) 
Half	shortcuts	(right)
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Bayesian Optimization Workflow

• Sample	some	initial	data	X1:n1	and	find	f(X1:n1)	

• Form	prior	to	approximate	f.	This	is	a	Gaussian	process	with	μn1x1,	Σn1xn1	
• Repeat	for	n2	steps:	

• Sample	new	points	X’1:n3	

• Find	expected	improvement	EI(x’)	for	each	new	point	and	choose	xn1+1	=	argmax	EI(x’)	
• Form	posterior	to	approximate	f	:	

• Augment	X1:n1	to	X1:n1+1	

• Find	f(xn+1)	

• Augment	μn1x1	to	μ(n1+1)x1	,	Σn1xn1	to	Σ(n1+1)x(n1+1)	

• Finally,	return	best	f	and	corresponding	best	x

Total	configs	explored:	n1	+	n2*n3 
Total	configs	trained:	n1	+	n2

Sourya	Dey �45

Model	function	f
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Gaussian process (GP)

A	collection	of	random	variables	such	
that	any	subset	of	them	forms	a	multi-
dimensional	Gaussian	random	vector

Sourya	Dey �46



Covariance kernel – 
Similarity between NN 
configs

Individual 
Distance

Individual 
Kernel

Complete 
Kernel

�47



Covariance kernel – 
Similarity between NN 
configs

Individual 
Distance

Individual 
Kernel

Complete 
Kernel
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Covariance kernel – 
Similarity between NN 
configs

Individual 
Distance

Individual 
Kernel

Complete 
Kernel

Convex	
combination

�49
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Expected Improvement (EI)

• Let	f*	be	the	minimum	of	all	observed	values	so	far	
• How	much	can	a	new	point	x	improve:	

• If	f(x)	>	f*,	Imp(x)	=	0	
• Else,	Imp(x)	=	f*-f(x)	

• EI(x)	=	Expectation	[	max(f*-f(x),0)	]

Standard	normal	cdf	=	P,	pdf	=	p

Sourya	Dey �50

Don’t need to evaluate f(x) to find EI(x)
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Data loader and augmentation considerations

Using	data	pre-loaded	from	npz	format	
Entire	dataset	is	in	memory

data	=	np.load(‘mnist.npz’)	
xtr,	ytr	=	data[‘xtr’],	data[‘ytr’]	
for	i	in	numbatches:	
				inputs	=	xtr[i*batch_size	:	(i+1)*batch_size]	
				labels	=	ytr[i*batch_size	:	(i+1)*batch_size]

Using	Pytorch	data	loaders	
Uses	generators	to	not	burden	memory

data	=	torchvision.datasets.MNIST(root	=	data_folder,	train	=	True,	download	=	False,	transform	=	transforms.ToTensor())	
train_loader	=	torch.utils.data.DataLoader(data['train'],	batch_size	=	batch_size,	shuffle	=	True,	num_workers	=	4,		 	
	 	 	 	 pin_memory	=	True)	
for	batch	in	train_loader:	
				inputs,	labels	=	batch

npz	is	faster,	data	loaders	are	more	versatile
Sourya	Dey �51



CNN Results

Performance- 
complexity 
tradeoff

Complexity	Penalty	= 
Training	time	/	epoch

We are not penalizing 
this, but it’s correlated

AWS	p3.2xlarge	
with	1	V100	GPU



CNN Results

Performance- 
complexity 
tradeoff

Complexity	Penalty	= 
Training	time	/	epoch

We are not penalizing 
this, but it’s correlated

AWS	p3.2xlarge	
with	1	V100	GPU
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0
0.01

0.1
1

10

wc

Input	at	top,	
output	at	bottom

wc 0 0.01 0.1 1 10

Initial learning rate η 0.001 0.001 0.001 0.003 0.001

Weight decay λ 3.3 x 10-5 8.3 x 10-5 1.2 x 10-5 0 0

Batch size 120 256 459 452 256

λ	strictly	correlated	with	Np



Pink	dots: 
Complexity	Penalty	= 
Training	time	/	epoch

Black	crosses: 
Complexity	Penalty	= 
#	Trainable	Params

MLP Results

CPU	=	Macbook	Pro	with	
8GB	RAM,	no	CuDA	
GPU	=	(Same)	AWS	
p3.2xlarge	with	V100
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Running Deep-n-Cheap

Sourya	Dey �57



Comparison (CNNs on CIFAR-10)

Auto	Keras	and	Gluon	don’t	support	getting	
final	model	out,	so	we	compared	on	best	val	acc	
found	during	search	instead	of	final	test	acc

Penalizes	inference	
complexity,	not	training



Comparison (MLPs)
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Takeaway

Sourya	Dey �60

We	may	not	need	
very	deep	networks!

Also	see	Zagoruyko	2016	–	WRN
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Search transfer

Can	a	NN	architecture	found	after	stages	1	and	2	on	
dataset	A	be	applied	to	dataset	B	after	running	Stage	

3	training	hyperparameter	search? 

How	does	it	compare	to	native	search	on	dataset	B?

Can	architectures	generalize?

Sourya	Dey �61
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Search 
transfer 
results

Transferring	from	
CIFAR	outperforms	
native	FMNIST	
(probably	due	to	
more	params) 

Training	times	
mostly	the	same

Sourya	Dey �62
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Stage 2 x1 x2 x3

x11 x12 x13 x21 x22 x23 x31 x32 x33Stage 3

Stage 1 x1 x2 x3

Greedy

What about a non-greedy search?

�63Sourya	Dey
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Justifying our greed

�64Sourya	Dey



University	of	Southern	California

Choosing initial points in Bayesian optimization

�65

Random	sampling Sobol	sampling 
Like	grid	search 

Better	for	more	dimensions
Sourya	Dey



BO vs random and grid search (30 points each)

Purely	random	search:	30	prior

Purely	grid	search	(Sobol):	30	prior
Balanced	BO:	15	prior	+	15	steps
Extreme	BO:	1	prior	+	29	steps
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Ensembling

�67

Multiple	models	vote	on	final	test	samples

Slight	increases	in	performance	at	the	cost	of	large	increases	in	complexity
Sourya	Dey
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DnC releases

Extension	to	segmentation	and	RNNs	coming	soon



Dataset 
Engineering

https://github.com/souryadey/morse-dataset

https://github.com/souryadey/morse-dataset
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Data, data, everywhere, 
Not quality enough to use

Real	world	data	has	challenges:	
➢	Too	few	samples	
➢	Incorrect	labeling	
➢	Missing	entries

Sourya	Dey �70

13.2 0.05 1200

10.9 A

0.78 B+ 1400

11.4 1100

Synthetic	data	is	generated	using	computer	algorithms	
➢ Very	large	quantities	can	be	generated	
➢Mimic	real-world	data	as	desired	
➢ Classification	difficulty	tweaking
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Morse Code 
Datasets

Sourya	Dey �71

Morse	Code	is	a	system	of	
communication	where	
letters,	numbers	and	
symbols	are	encoded	
using	dots	and	dashes

Example:	

+				·	-	·	-	·
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Morse Code 
Datasets

Sourya	Dey �72

Morse	Code	is	a	system	of	
communication	where	
letters,	numbers	and	
symbols	are	encoded	
using	dots	and	dashes

Example:	

+				·	-	·	-	·
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Morse Code 
Datasets

Sourya	Dey �73

Morse	Code	is	a	system	of	
communication	where	
letters,	numbers	and	
symbols	are	encoded	
using	dots	and	dashes

Example:	

+				·	-	·	-	·
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Variations and Difficulty Scaling
➢	More	noise	
➢	Leading	and	trailing	spaces	
➢	Confusing	dashes	with	dots	and	spaces	
➢	Dilating	frame	to	size	256	
➢	Increasing	#samples	in	dataset

Sourya	Dey �74
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Neural network performance (3-layer MLP)

Sourya	Dey �75

Tunable	dataset	difficulty	leads	to	a	variety	of	benchmarks



Metrics to characterize dataset difficulty

Sourya	Dey �76

Probability	of	the	
mth	class	occurring

Gaussian	Q-function

Minimum	distance	
between	centroids	of	mth	
class	and	any	other	class

Distance	between	centroids	
of	mth	and	jth	classes	

#features

#classes

Average	variance	across	
all	features	in	mth	class

High	V	values	=>	More	difficult



University	of	Southern	California

Goodness of the Metrics

Sourya	Dey �77

Pearson’s	correlation	coefficient	between	
metric	and	test	set	classification	accuracy	of	
Morse	code	datasets	of	varying	difficulty	
(negative	because	metrics	indicate	difficulty)

Metrics	can	be	used	to	understand	the	
inherent	difficulty	of	the	classification	
problem	on	a	dataset	before	applying	
any	learning	algorithm
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