
EXPLORING COMPLEXITY REDUCTION FOR LEARNING IN DEEP

NEURAL NETWORKS

by

Sourya Dey

PhD Dissertation Proposal
UNIVERSITY OF SOUTHERN CALIFORNIA

(ELECTRICAL ENGINEERING)

April 2019

Copyright 2019 Sourya Dey

Let yourself be silently drawn by the
strange pull of what you really love.

–Rumi

ii

Table of Contents

List of Figures vi

List of Tables ix

List of Acronyms x

Acknowledgements xi

Abstract xii

Related Publications with links xiii

1 Introduction 1
1.1 Neural networks . 1

1.1.1 Complexity of neural networks 1
1.1.2 Model search . 2

1.2 Dissertation Contributions . 3
1.2.1 Achieved Contributions . 3
1.2.2 Expected Contributions . 5

1.3 Proposal Organization . 7

2 Background 8
2.1 Mathematical Notation . 8
2.2 Notation and Basic Operations for Neural Networks 12

2.2.1 Feedforward (FF) . 14
2.2.2 Backpropagation (BP) . 18
2.2.3 Update (UP) . 19

2.3 Training and Inference . 20
2.4 Other types of networks . 25

2.4.1 Convolutional neural networks 26
2.4.2 Recurrent neural networks 27

iii

3 Pre-Defined Sparsity 28
3.1 Related Work . 28
3.2 Structured Pre-defined sparsity . 30

3.2.1 Motivation and Preliminary Examples 34
3.2.2 Structured Constraints . 35
3.2.3 Modifications to Neural Network Operations 38

3.3 Performance Results, Trends and Guidelines 40
3.3.1 Datasets and Experimental Configuration 41
3.3.2 Dataset Redundancy . 46
3.3.3 Individual junction densities 49
3.3.4 ‘Large and sparse’ vs ‘small and dense’ networks 54

3.4 Summary . 58

4 Hardware Architecture 59
4.1 Junction pipelining and Operational parallelism 63
4.2 Memory organization . 66
4.3 Clash-freedom . 68
4.4 Batch size . 69
4.5 Architectural Constraints . 70
4.6 Special Case: Processing a FC junction 72
4.7 FPGA Implementation . 74

4.7.1 Network Configuration and Training Setup 75
4.7.2 Bit Width Considerations 76
4.7.3 Implementation Details . 82

4.8 Summary . 87

5 Connection Patterns 88
5.1 Biadjacency Matrices . 88
5.2 Clash-free memory access patterns 91

5.2.1 Types of memory access patterns 93
5.3 Comparison between classes of Pre-defined Sparsity 97
5.4 Comparison to other methods of sparsity 101
5.5 Metrics for Connection Patterns . 102

5.5.1 Window biadjacency matrices 103
5.5.2 Scatter . 107

6 Dataset Engineering 113
6.1 Generating Algorithm . 116

6.1.1 Variations and Difficulty Scaling 119
6.2 Neural Network Results and Analysis 121

6.2.1 Results . 121
6.2.2 Results for Pre-Defined Sparse Networks 125

iv

6.3 Metrics for Dataset Difficulty . 128
6.3.1 Goodness of the Metrics . 131
6.3.2 Limitations of the Metrics 133

6.4 Summary . 134

7 Model Search 135
7.1 Architecture Search . 136

7.1.1 Evolutionary Algorithms . 137
7.1.2 Reinforcement Learning (RL) methods 138
7.1.3 Other methods of Architecture Search 140

7.2 Hyperparameter optimization . 140
7.3 Our Proposed Research . 142

7.3.1 Proposed research in Architecture Search 142
7.3.2 Proposed research in Hyperparameter Optimization 146

8 Conclusion 147
8.1 Summary . 147
8.2 Future Work . 151
8.3 Final Word . 151

References 153

v

List of Figures

2.1 Complete training flow for a single input sample for a simple MLP. 15
2.2 Comparison of ReLU and sigmoid activations and their derivatives. 17
2.3 Flowchart showing the correct way to use data and set parameters and

hyperparameters. 22
2.4 Example of a simple CNN. 26
2.5 Example of a RNN. 27

3.1 Illustrating basic concepts of structured pre-defined sparsity. 33
3.2 Histograms of weight values in different junctions for fully connected

networks trained on MNIST, and preliminary examples of the per-
formance effects of pre-defined sparsity. 36

3.3 Comparison of classification accuracy for original and changed redun-
dancy datasets. 48

3.4 Comparing histograms of weight values for original and reduced
redundancy versions of MNIST, after training fully-connected net-
works. 49

3.5 Comparison of classification accuracy as a function of ρnet for dif-
ferent ρL, where L = 2. 51

3.6 Comparison of classification accuracy as a function of ρnet for ρ2 vs
ρ3 in three-junction MNIST networks, keeping ρ1 fixed. 51

3.7 Comparison of classification accuracy as a function of ρnet for datasets
with varying redundancy. 52

3.8 Comparing ‘large and sparse’ to ‘small and dense’ networks for
MNIST networks with different numbers of junctions. 55

3.9 Comparing ‘large and sparse’ to ‘small and dense’ networks for a
Reuters network. 56

3.10 Comparing ‘large and sparse’ to ‘small and dense’ networks for
TIMIT and CIFAR networks. 57

4.1 Overview of our hardware architecture. 60
4.2 Architecture for parallel operations for an intermediate junction i

(i 6= 1, L) showing the three operations along with associated inputs
and outputs. 64

vi

4.3 An example of hardware processing inside a sparse junction. 67
4.4 An example of hardware processing inside a fully connected junction. 73
4.5 Maximum absolute values (left y-axis) for all weights, biases, and

deltas in the network, and percentage classification accuracy (right
y-axis), as the network is trained. 77

4.6 Histograms of absolute value of s1 with respect to dynamic range for (a)

sparse vs. (b) fully connected cases, as obtained from software simula-

tions. Values right of the pink line are clipped. 80
4.7 Comparison of activation functions for a1, as obtained from software

simulations. 81
4.8 Performance for different ρ2, keeping ρ1 fixed at 6.25%, as obtained from

software simulations. 85
4.9 Breaking up each operation into 3 clock cycles. 86
4.10 Our design working on the Xilinx XC7A100T-1CSG324C FPGA. 87

5.1 Different connection patterns arising in a structured pre-defined
sparse network. 89

5.2 Repeating Fig. 4.3 for convenience. 93
5.3 Various types of clash-free left memory access patterns and memory

dithering. 95
5.4 An example of biadjacency matrices and equivalent junctions. . . . 103
5.5 Different types of windowing in left neurons. 104
5.6 Window biadjacency matrices and scatter. 106
5.7 Constructing window biadjacency matrices. 107
5.8 Performance vs.scatter. 110

6.1 Generating the Morse codeword • — • — • corresponding to the
+ symbol. 119

6.2 Classification performance for different variations of the Morse datasets.122
6.3 Effects of noise leading to spaces getting confused with dots and

dashes. 123
6.4 Effects of increasing the size of Morse 3.1 by a factor of x on test accuracy

after 30 epochs (blue), and (Training Accuracy − Test Accuracy) after

30 epochs (orange). 124
6.5 Effects of imposing pre-defined sparsity on classification performance for

different Morse datasets. 126
6.6 Validation performance results for varying ρ1 and ρ2 individually so

as to keep ρnet fixed at (a) 25%, (b) 50%. 127
6.7 Plotting each metric for dataset difficulty vs. percentage accuracy

obtained for different Morse datasets. 132

7.1 Types of model search. 136

vii

8.1 Trends in AI papers on Scopus. 148
8.2 Trends in AI papers on arXiv. 149
8.3 Parameter explosion in deep neural networks over the years. 149

viii

List of Tables

4.1 Hardware Architecture Total Storage Cost Comparison for FC vs.
sparse cases. 65

4.2 Implemented Network Configuration 76
4.3 Effect of Bit Width on Performance 79

5.1 Comparison of Clash-free Left Memory Access Types and associated
Hardware Cost for a Single Junction i with (Ni−1, Ni, d

out
i , dini , zi) =

(12, 12, 2, 2, 4) . 97
5.2 Comparison of Pre-Defined Sparse Classes 100

6.1 Correlation coefficients between metrics and accuracy 132

7.1 Building on and extending our research to reduce the complexity of
architecture search. 144

ix

List of Acronyms

AI Artificial Intelligence

ASIC Application Specific Integrated Circuit

ASR Automatic Speech Recognition

BRAM Block Random Access Memory

CI Confidence Interval

CNN Convolutional Neural Network

DSP Digital Signal Processing

FC Fully Connected

FF Feedforward

FPGA Field Programmable Gate Array

gcd Greatest Common Divisor

GPU Graphics Processing Unit

LDPC Low Density Parity Check

LED Light Emitting Diode

LUT Look Up Table

MFCC Mel-frequency Cepstral Coefficient

MLP Multilayer Perceptron

NN Neural network

PCA Principal Component Analysis

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

RTL Register Transfer Level

SGD Stochastic Gradient Descent

TPC Test Prediction Comparison

UART Universal asynchronous receiver-transmitter

x

Acknowledgements

Pursuing a Ph.D. is a beautiful thing since it allows one to be free to explore

uncharted territory instead of being burdened by constraints of banality. In this

regard, I would like to thank my co-advisors – Professors Peter Beerel and Keith

Chugg – without whose help and guidance I would not have been able to explore

the research directions that have led to the material in this dissertation proposal.

I am grateful to past and present members of my research team who have

helped and collaborated with me in my research. Special thanks to my primary

collaborators – Kuan-Wen Huang, Yinan Shao, Diandian Chen, and Souvik Kundu.

I also acknowledge the contribution of secondary collaborators who have since

moved on – Zongyang Li, Saad Zafar, Mahdi Jelodari Mamaghani, Zheng Wu,

Jiajin Xi, and Venkata Nishanth Narisetty; and current research team members

whose constant feedback has been invaluable – Professor Leana Golubchik, Marco

Paolieri, Arnab Sanyal, and Kiran Nagendra. I am also indebted to Professor

Panayiotis Georgiou and Mohammed Nasir for help in specific efforts.

I would like to thank the National Science Foundation, Software and Hard-

ware Foundations, for funding my research under Grant 1763747. I am grateful to

Diane Demetras and Annie Yu for their help in administrative matters related to

the progress of my Ph.D. and presentation of my research to the outside world.

Heartfelt thanks to my family members for their constant love and support,

despite being located halfway around the world. Nothing would have been possi-

ble without them.

Finally, thanks to you the reader for picking up this dissertation proposal detail-

ing my research efforts since spring 2016. I hope you have as much enjoyment

reading it as I had writing it.

xi

Abstract

Neural networks have proven to be extremely powerful tools for cutting-edge

machine learning and artificial intelligence applications such as computer vision

and speech recognition. Modern neural networks are usually deep, i.e. comprising

many trainable parameters across several interconnected layers, which gives rise

to significant computational complexity, particularly during their training phase.

Such complexity is often prohibitively large and concentrates the deployment of

deep neural networks only to the few entities with the means to procure the neces-

sary financial and computational resources. Moreover, the study of neural networks

is largely empirical and largely guided by the underlying current of thought “we

did this because it works”, instead of “this is why it works”.

In this dissertation proposal, we propose pre-defined sparsity – a technique

to reduce the computational complexity of neural networks during both training

(i.e. learning) and inference phases. We analyze the resulting sparse connection

patterns in an attempt to understand network performance. We also introduce a

hardware architecture compatible with pre-defined sparsity to reduce the storage

complexity of neural networks and potentially accelerate training. The architec-

ture is flexible in the sense that the complexity of the network to be implemented is

decoupled from the available hardware resources. Additionally, we engineer a fam-

ily of synthetic datasets of algorithmically customizable difficulty for benchmarking

neural networks and machine learning methodologies. Finally, we propose expected

contributions in model search, which involves understanding how and why differ-

ent network structures and methods work, and consequently selecting appropriate

network configurations of low complexity for different applications.

xii

Related Publications with links

Note that the citation counts in the URLs linked below may be inaccurate. Please
see the author’s Google Scholar page for a full list of citations.

S. Dey, K. W. Huang, P. A. Beerel and K. M. Chugg, “Pre-defined Sparse Neu-
ral Networks with Hardware Acceleration,” in IEEE Journal on Emerging and
Selected Topics in Circuits and Systems (Early Access), 2019. doi: 10.1109/JET-
CAS.2019.2910864.
IEEE: https://ieeexplore.ieee.org/document/8689061

S. Dey, Y. Shao, K. M. Chugg and P. A. Beerel, “Accelerating training of deep
neural networks via sparse edge processing,” in 26th International Conference on
Artificial Neural Networks (ICANN) Part 1, pp. 273–280, Springer, 2017.
Springer: https://link.springer.com/chapter/10.1007/978-3-319-68600-4_32

S. Dey, P. A. Beerel and K. M. Chugg, “Interleaver design for deep neural net-
works,” in 51st Annual Asilomar Conference on Signals, Systems, and Computers
(ACSSC), pp. 1979–1983, Oct 2017.
IEEE: https://ieeexplore.ieee.org/document/8335713

S. Dey, K. W. Huang, P. A. Beerel and K. M. Chugg, “Characterizing sparse
connectivity patterns in neural networks,” in 2018 Information Theory and Appli-
cations Workshop (ITA), pp. 1–8, Feb 2018.
IEEE: https://ieeexplore.ieee.org/document/8502950

[Awarded Best Paper] S. Dey, K. M. Chugg and P. A. Beerel, “Morse Code
Datasets for Machine Learning,” in 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), pp. 1-7, Jul 2018.
IEEE: https://ieeexplore.ieee.org/document/8494011

S. Dey, D. Chen, Z. Li, S. Kundu, K. W. Huang, K. M. Chugg and P. A. Beerel,
“A Highly Parallel FPGA Implementation of Sparse Neural Network Training,” in

xiii

https://scholar.google.com/citations?user=vQw9oFcAAAAJ&hl=en&oi=ao
https://ieeexplore.ieee.org/document/8689061
https://link.springer.com/chapter/10.1007/978-3-319-68600-4_32
https://ieeexplore.ieee.org/document/8335713
https://ieeexplore.ieee.org/document/8502950
https://ieeexplore.ieee.org/document/8494011

2018 International Conference on Reconfigurable Computing and FPGAs (ReCon-
Fig), pp. 1–4, Dec 2018. Expanded preprint version available on arXiv.
IEEE: https://ieeexplore.ieee.org/document/8641739

xiv

https://arxiv.org/abs/1806.01087
https://ieeexplore.ieee.org/document/8641739

Chapter 1

Introduction

1.1 Neural networks

Neural network (NN)s have proven to be ubiquitous in modern machine learning

and Artificial Intelligence (AI) applications such as object classification [1], self-

driving cars [2], Automatic Speech Recognition (ASR) [3], and so on. Such NNs are

usually deep, implying that there are hidden layers between the input (such as a

picture of a cat), and the output (such as a probability distribution indicating what

animal the picture is). The depth of a NN can vary from just one or two hidden

layers, as is common for a Multilayer Perceptron (MLP) [4], to several hundred for

a Convolutional Neural Network (CNN) [5]. Throughout this work, we will use the

term neural network (NN) to denote a deep neural network, i.e. having at least

one hidden layer.

1.1.1 Complexity of neural networks

NNs used for classification typically rely on large amounts of labeled data to train

– a process during which the numerical values of its internal parameters are tuned

1

to facilitate better inference – measured as classification performance on unseen

data. As more data have become available, the size and complexity of NNs have

grown sharply, with modern NNs containing millions [1] or even billions of train-

able parameters [6]. These massive NNs come with the cost of large computational

and storage demands. The current state of the art is to train large NNs on Graph-

ics Processing Unit (GPU)s in the cloud – a process that can take days to weeks

even on powerful GPUs [1,6,7] or similar programmable processors with multiply-

accumulate accelerators [8]. Therefore, several prominent researchers [9] have iden-

tified complexity reduction as a key to NN acceleration, which is a general term

referring to speeding up the deployment and operation of a NN. Acceleration is gen-

erally performed post-training to reduce complexity of inference only, e.g. methods

for quantization, compression, and grouping parameters [10–13]. However, reduc-

tion in training complexity of NNs remains largely unexplored.

1.1.2 Model search

There are a number of choices which play a crucial role during the deployment

of NNs to solve specific problem(s). Some of these are the number of layers, the

structure of the layers, how fast the network should learn, and so on. These form

the domain of model search. Unfortunately, the design of NNs is a largely empiri-

cal process and there is no clear understanding regarding, for example, how many

layers and neurons are appropriate for classifying a picture of a handwritten digit

2

into one out of ten classes. There have been efforts in model search, which can

be broadly classified into two categories – a) architecture search to determine the

optimal structure of a NN [14–18], and b) hyperparameter search and schedul-

ing [19–22]. The former effort remains computation-intensive, for example, [16]

requires 800 GPUs running for 21–28 days to arrive at a good architecture. There

have been several algorithms relating to the latter effort; and both are active areas

of research.

1.2 Dissertation Contributions

The contributions of this dissertation proposal are divided broadly into two cat-

egories – a) achieved, which are focused around complexity reduction, and b)

expected, which are focused around model search by leveraging the complexity

reduction techniques of the achieved contributions.

1.2.1 Achieved Contributions

This is a list of the contributions we have already achieved and published in various

conferences and journals:

1. We proposed the novel technique of pre-defined sparsity – a method to

reduce the complexity of NNs during both training and inference phases. Our

results show that NN complexity, both in terms of the number of parameters

3

(storage) and the number of operations to be performed (computation), can

be reduced by factors greater than 5X without significant performance loss

[23–25].

2. We analyzed trends and design guidelines for selecting a pre-defined

sparse NN [23, 24]. These studies help to accelerate the search for good

pre-defined sparse NNs given any problem.

3. We proposed a hardware architecture to leverage the benefits of pre-

defined sparsity [23, 25]. The architecture is flexible in the sense that the

complexity of the NN to be implemented is decoupled from the available

hardware resources on the given device (such as Field Programmable Gate

Array (FPGA)(s)). Thus, NNs of varying sizes can be supported on various

hardware platforms. Moreover, the architecture supports both training and

inference phases of a NN. To the best of our knowledge, we are the first to

propose such a flexible hardware architecture with the potential to accelerate

both training and inference.

4. We developed a working FPGA implementation of the hardware archi-

tecture [26]. This serves as a proof-of-concept of our ideas.

5. We proposed and analyzed the properties of a class of pre-defined sparse

NN connection patterns which are suited to our hardware architecture in

the sense that they allow maximum throughput [23, 27]. In particular, we

4

showed that such hardware-friendly sparse patterns result in no performance

degradation compared to other sparse patterns.

6. We developed a metric called scatter to characterize the ‘goodness’ of a con-

nection pattern in order to predict NN performance prior to training.

This is helpful in filtering out bad connection patterns without incurring the

computational expenses of training.

7. We have also created a family of synthetic datasets on classification of

Morse code symbols [28]. Owing to their algorithmic generation capability,

it is simple to tune the parameters of these datasets. This results in a large

number of classification problems of varying difficulty, which can be used to

benchmark different NNs and other machine learning algorithms. This work

resulted in a ‘Conference Best Paper’ award. The datasets are open-source

and available at [29].

1.2.2 Expected Contributions

This is a list of the contributions we expect to make:

1. We will improve the existing hardware implementation in [26]. In particu-

lar, the author of this dissertation proposal plans to work on pipelining to

improve operational speed of the hardware implementation. Other

5

members of our research team are working on better memory management,

and using cloud FPGA resources to support more powerful NNs.

2. We will study techniques for architecture search of NNs. This implies

deciding on the number of layers, the number of neurons, and different meth-

ods of connecting layers in a network. The plan is to leverage our achieved

contributions, i.e. the underlying theme of the search will be low-complexity

(sparse) NNs which lead to good performance.

3. We will analyze the properties of good NN architectures to gain a deeper

understanding of NNs, such as the crucial parameters and appropriate

sparsity levels. This will help us to to develop indicators and monitors to

predict NN performance. These efforts will expand our achieved contribu-

tions of trends in pre-defined sparse connection patterns, and predicting NN

performance without having to fully train. We can collectively describe this

and the previous expected contribution as automating the search for

good low-complexity NNs.

4. Time and resources permitting, we also plan to work on hyperparameter

configuration strategies which may lead to faster convergence and better

training of NNs. This work will be specifically geared towards hyperparam-

eters determining sparsity and complexity levels in a NN. For example, a

6

sparse NN needs less regularization as compared to a dense NN (see Chapter

2 for regularization and other related definitions).

1.3 Proposal Organization

This dissertation proposal is organized as follows. Chapter 2 contains background

necessary for understanding NNs. Chapter 3 introduces pre-defined sparsity, along

with trends and guidelines for selecting connection patterns. Chapter 4 discusses

our hardware architecture and its FPGA implementation. Chapter 5 analyzes

sparse connection patterns, and metrics to predict NN performance. Chapter 6

discusses our efforts in creating a family of synthetic datasets, along with metrics

to characterize their difficulty. Chapter 7 introduces model search of NNs, which

pertains to our expected contributions, and finally, Chapter 8 concludes this work.

7

Chapter 2

Background

In this chapter, we provide the background necessary for understanding the con-

cepts and terms used in the majority of this work. We will begin with mathematical

notation, then move on to notation and operations specific to neural networks. We

will not provide background on model search in this chapter since it is not neces-

sary to understand our achieved contributions, instead we postpone it to Chapter

7.

2.1 Mathematical Notation

We will use the numerator layout convention for matrix calculus. A complete set

of rules for this convention is given in [30]. We summarize some of the key rules

below:

• Vectors are written as lower case bold letters, such as x, and can be either

row (dimensions 1×n) or column (dimensions n×1). Column vectors are the

default choice, unless otherwise mentioned. Individual elements are indexed

by bracketed superscripts, e.g. x(i), where i ∈ {1, · · · , n}.

8

• Matrices are written as upper case bold letters, such as X. A matrix with

dimensions m × n corresponds to m rows and n columns. Individual ele-

ments are indexed by bracketed double superscripts for row and column,

respectively, e.g. X(i,j), where i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}.

• The derivative of f with respect to x is
∂f

∂x
, where both x and f can

be scalars, vectors, or matrices. The gradient of f with respect to x is

∇xf =

(
∂f

∂x

)T
, i.e. gradient is transpose of derivative. The derivative is

important because it obeys the chain rule of calculus and helps to derive

several results. The gradient is important because it is the form used in

updating NN parameters, as will be described in Section 2.2.3.

Some relevant forms of derivatives and gradients are described next.

Scalar-by-scalar

Both f and x are scalars. We do not define the gradient in this case. The derivative

is the scalar
∂f

∂x
, also written as f ′.

Scalar-by-vector

f is a scalar, x is a vector of dimensions n× 1. Then the derivative is a 1× n row

vector:

∂f

∂x
=

[
∂f

∂x(1)
∂f

∂x(2)
· · · ∂f

∂x(n)

]
(2.1)

9

and the gradient ∇xf is its transposed column vector.

Vector-by-vector of equal size

Both f and x are vectors of dimensions n×1. Then the derivative is the Jacobian

matrix of dimensions n× n:

∂f

∂x
=

∂f (1)

∂x(1)
· · · ∂f (1)

∂x(n)

...
. . .

...

∂f (n)

∂x(1)
· · · ∂f (n)

∂x(n)

(2.2)

Vectorized scalar function

This is a scalar-to-scalar function applied element-wise to a vector, e.g. :

f

x(1)

x(2)

...

x(n)

=

f
(
x(1)
)

f
(
x(2)
)

...

f
(
x(n)
)

(2.3)

10

In this case, both the derivative and gradient are the same n × n diagonal

matrix, given as:

∇xf =

f ′
(
x(1)
) 0

f ′
(
x(2)
)

. . .

0 f ′
(
x(n)
)

(2.4)

An equivalent form of this is to take the diagonal and express it as a n × 1

vector:

f ′ =

f ′
(
x(1)
)

f ′
(
x(2)
)

...

f ′
(
x(n)
)

(2.5)

To realize the effect of this equivalent form, let’s say we want to multiply the

gradient ∇xf from (2.4) with some n-dimensional (column) vector a. Achieving

11

the same result with f ′ from (2.5) would require the Hadamard product ◦, defined

as element-wise multiplication of 2 vectors:

(∇xf)a = f ′(x) ◦ a =

f ′
(
x(1)
)
a(1)

f ′
(
x(2)
)
a(2)

...

f ′
(
x(n)
)
a(n)

(2.6)

2.2 Notation and Basic Operations for Neural

Networks

A NN, sometimes referred to as an Artificial Neural Network to distinguish it from

biological neural networks found in living organisms, is an interconnected set of

nodes, or neurons, with the capability to learn mathematical representations of

the data fed to it. This ability to learn is referred to as training. Once a NN is

trained, it may be used for inference, where it is operated on new data different

from what it was trained on, and its performance based on some metric(s) is noted.

We will use a Multilayer Perceptron (MLP), which is a commonly used NN

for classification problems, and assume supervised learning, i.e. where labels

are provided for different training samples and the NN is asked to learn from

them. Our work also extends to other networks and forms of learning, however,

12

to avoid burdening the reader, we will initially introduce notation for MLPs using

supervised learning and then extend as required.

A set of nodes in a MLP is referred to as a layer. An (L + 1)-layer MLP has

Ni nodes in the ith layer, described collectively by the neuronal configuration

Nnet = (N0, N1, · · · , NL),1 where layer 0 is the input layer. We use the convention

that layer i is to the ‘right’ of layer i− 1, or ‘next’ to layer i− 1.

There are L junctions between layers, with junction i (i ∈ {1, 2, · · · , L})

connecting the Ni−1 nodes of its left layer i − 1 with the Ni nodes of its right

layer i. For a Fully Connected (FC) MLP, all the nodes in a layer connect to

all the nodes in its next and previous layers, if present. These connections are

defined using edges, which have associated weight values. Weights in junction i

are collected as a matrix Wi
Ni×Ni−1

. Note that the rows (1st index) refer to the next

layer, and the columns (2nd index) refer to the previous layer. This is to facilitate

matrix-vector multiplications, as will be seen in (2.7a). Additionally, individual

nodes in all layers except for the input have bias values. For layer i, the biases

are collected as a vector bi
Ni×1

.

Note that we denote layer or junction number via subscript. This is why we

denote individual elements of matrices and vectors as bracketed superscripts, as

1We make a distinction between an ordered tuple of numbers providing information, such as
Nnet, and a vector, such as x. The former is not meant to be used in algebraic calculations,
hence its individual elements are written with round brackets around them. The latter is used in
algebra and hence its individual elements are written with the more conventional square brackets
around them, as in the equations presented so far in this chapter.

13

shown in Section 2.1. For example b
(3)
2 refers to the bias of the 3rd neuron in layer

2, and W
(4,5)
1 refers to the weight of the edge connecting the 5th node in layer 0 to

the 4th node in layer 1. This notation suits us since throughout this work we will

need to reference layer numbers far more than individual weight or bias values,

and hence benefit from using subscripts for layer number instead of the somewhat

inconvenient bracketed superscripts.

Weights and biases are all trainable parameters, which means that their val-

ues change during training. This is usually done until the values converge, i.e. the

change in values obtained by training on more data is negligible. In practical sce-

narios, training is often stopped due to time or computational constraints instead

of waiting for convergence. The process of training is affected by some values which

the network does not learn, instead, they are adjusted by an entity external to the

NN such as a human. These values are known as hyperparameters, and describe

quantities such as how fast weight values should change, how many inputs should

be trained on in parallel, and so on. Next we describe the three operations of a

NN. These are summarized in Fig. 2.1.

2.2.1 Feedforward (FF)

This process starts by accepting an external input datum. Each input is repre-

sented by a vector of features a0
N0×1

, and a ground truth labeling y
NL×1

denoting

14

Figure 2.1: Complete training flow for a single input sample for a MLP with Nnet =
(4, 3, 2). (a) Original NN, presented with an input a0 = [0.5, 0.4, 1, 0.7]T and correspond-
ing one-hot ground-truth labeling y = [0, 1]T . FF proceeds with ReLU and Softmax
activations for junctions 1 and 2 respectively, BP uses cross-entropy cost, and UP uses
η = 0.6. No regularization is applied and batch size M = 1. (b) After updating the
weights and biases of the original NN.

the ideal output layer values. Then, ∀i ∈ {1, 2, · · · , L}, the Feedforward (FF)

operation proceeds as:

si
Ni×1

= Wiai−1 + bi (2.7a)

ai
Ni×1

= h (si) (2.7b)

H ′i
Ni×Ni

=
∂ai
∂si

(2.7c)

where s is the linear output, h is the non-linear activation function, and a is

the activation output. Note that (2.7c) is not strictly a part of FF, but it is

computed since the derivative values are required for BP.

For most layers, h is a vectorized scalar function applied to si. In such cases,H ′i

is a diagonal matrix and can be reduced to the vector h′i
Ni×1

, as shown in Section 2.1.

One such common activation function which we will use frequently is Rectified

Linear Unit (ReLU) [31], shown below in its scalar-to-scalar form:

ReLU(x) =

x, x ≥ 0

0, x < 0

(2.8a)

ReLU′(x) =

1, x > 0

[0, 1], x = 0

0, x < 0

(2.8b)

16

Figure 2.2: Comparison of ReLU and sigmoid (a) activations, and (b) activation deriva-
tives.

An alternative to ReLU is the sigmoid function given as:

σ(x) =
1

1 + e−x
(2.9a)

σ′(x) = σ(x)(1− σ(x)) (2.9b)

Fig. 2.2 illustrates ReLU and sigmoid.

For the last layer (i = L) however, h is usually the softmax function which

outputs a probability distribution. This is a vector-to-vector function where each

element of the output vector depends on each element of the input vector, hence

H ′L is not (necessarily) a diagonal matrix.

aL = Softmax (sL) =

[
es

(1)
L∑NL

i=1 e
s
(i)
L

es
(2)
L∑NL

i=1 e
s
(i)
L

· · · es
(NL)

L∑NL

i=1 e
s
(i)
L

]T
(2.10)

17

2.2.2 Backpropagation (BP)

The final layer activations aL are compared with the ground-truth labels y to

compute a scalar cost (or loss) function C. The cost function we use is cross-

entropy:

C = −
NL∑
i=1

y(i) ln a
(i)
L (2.11)

The delta (or error) values for every layer are computed next. These are the

gradients of the cost with respect to s:

δL
NL×1

=

(
∂C

∂sL

)T
= H ′L

T∇aL
C (2.12a)

δi
Ni×1

=

(
∂C

∂si

)T
= H ′i

T
W T

i+1δi+1 ∀i ∈ {1, 2, · · · , L− 1} (2.12b)

The above equations can be derived using the chain rule for derivatives.

Classification is often done using one-hot labels, i.e. all the elements in y are

0s except for the correct class, which has value 1. For example, when classifying

an image of a digit into one out of ten possible classes 0 − 9, if the correct class

for a particular input sample is 3, its one-hot ground truth labeling would be

y = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T . For the commonly occurring case of one-hot labels,

cross-entropy cost, softmax activation for the output layer, and a scalar-to-scalar

18

activation applied element-wise to all other layers such as ReLU, (2.12) simplifies

to:

δL
NL×1

= aL − y (2.13a)

δi
Ni×1

=
(
W T

i+1δi+1

)
◦ h′i ∀i ∈ {1, 2, · · · , L− 1} (2.13b)

Note that the sigmoid derivative has a maximum value of 0.25, as shown in Fig.

2.2(b). As a result, the delta values can become very small when backpropagating

through deep networks. This phenomenon is known as the vanishing gradient

problem [32], and is the reason why sigmoid activations have generally fallen out

of favor with MLPs.

2.2.3 Update (UP)

The goal of training a NN is to minimize the cost. An optimization algorithm

commonly used for achieving this goal is Stochastic Gradient Descent (SGD),

wherein the value of a particular trainable parameter of the NN is updated using

the gradient of the cost with respect to it. The gradients for a single input sample

are given as ∇Wi
C = δia

T
i−1 and ∇biC = δi. Knowing the true gradient requires

knowledge of the underlying data distribution, which is usually not obtainable. In

SGD, the true gradients are approximated by averaging the single sample gradients

19

over a batch (sometimes called minibatch) of M input samples. This gives the

SGD update rule ∀i ∈ {1, 2, · · · , L} as:

Wi ←Wi −
η

M

M∑
m=1

(
δia

T
i−1
)[m]

(2.14a)

bi ← bi −
η

M

M∑
m=1

(δi)
[m] (2.14b)

where η is the learning rate hyperparameter determining how fast the network

should learn, and square-bracketed superscript m denotes input sample number m

(not to be confused with round-bracketed superscripts for individual elements in

a vector or matrix).

While trainable parameters refers to weights and biases, we will use the term

network parameters to collectively refer to {ai,h′i, δi,Wi, bi} ∀i ∈ {1, 2, · · · , L}.

2 These network parameters account for the total storage cost.

2.3 Training and Inference

A NN is initially trained using all the operations described, i.e. FF, BP and

UP. Inputs are traversed in batches until all inputs in the training dataset are

exhausted, this constitutes an epoch of training. A NN can be trained for dozens

2The range of h′i is from 1 to L− 1 since final layer softmax derivatives are directly combined
with cost derivatives to yield δL.

20

or even hundreds of epochs depending on the performance desired. Two met-

rics for determining performance are a) the cost, which should be minimized, and

more commonly, b) the classification accuracy, computed as the fraction of inputs

correctly classified, which should be maximized.

Validation is commonly done after every epoch to determine how the NN will

behave on unseen data. This validation data is a separate subset of the training

data. The hyperparameters are adjusted according to validation performance.

For example, if training performance keeps improving but validation performance

deteriorates, the NN is overfitting. This implies that the NN is learning its

training data ‘too well’ and failing to generalize on unseen data. This typically

happens when the number of trainable parameters is far more than the number of

input data samples. In such cases, training should be stopped, or regularization

may prove to be helpful.

Once training is complete, the NN performs inference on test data. Inference

performance, such as classification accuracy on test data, often serves as

the defining measure for how good a NN is. Note that inference only involves

computation of (2.7a) and (2.7b), and hence is of much lower complexity than

training. The complete cycle of using data for training and inference is summarized

in Fig. 2.3. Next we discuss some hyperparameters and design choices we used

when performing experiments.

21

Figure 2.3: Flowchart showing the correct way to use data and set parameters and
hyperparameters.

Regularization

The idea behind regularization is to impose an additional constraint on the cost

objective to make the NN generalize better to unseen data (i.e. validation and test),

and combat overfitting. A typical way to do this is by imposing an L2 penalty

on the magnitudes of the weights. The regularized cost function becomes:

C = C0 + λ ‖W‖22 (2.15)

where C0 is the original cost function such as given in (2.11), λ is a hyperparameter

denoting the importance of making the weights small relative to minimizing the

original cost function, and W is the vector containing all the weights across all

junctions of the network (i.e. concatenation of the flattened matrices Wi ∀i ∈

{1, 2, · · · , L}). Typical values for λ range between 10−3 to 10−6.

22

Regularization helps to improve performance particularly when NN is over-

parametrized, i.e. it has a large number of trainable parameters. As we shall see

later in this work, imposing pre-defined sparsity is a form of regularization since

it reduces the number of trainable parameters.

Initializing trainable parameters

Initializing all weights to a constant such as 0 usually slows down learning. A

popular technique to initialize weights is according to a normal distribution, such

as Glorot Normal [33]

Wi ∼ N
(

0,
2

dini + douti

)
(2.16)

or He Normal [34]:

Wi ∼ N
(

0,
2

dini

)
(2.17)

where N (µ, σ2) denotes the Normal distribution with mean µ and variance σ2.

Biases can be initialized with 0s, or a small positive constant to help ReLU

units remain active (i.e. not operating on inputs less than 0).

23

Optimizer

SGD, as given in (2.14), is a baseline optimizer for reducing cost.

Other adaptive optimizers extend SGD by incorporating techniques such as

momentum and bias correction (see [35] for an overview of these tech-

niques). A popular optimizer is Adam [36], which has default values

(η = 0.001, ρ1 = 0.9, ρ2 = 0.999, ε = machine epsilon), and works as shown below

(for any arbitrary trainable parameter p).

v1 ← ρ1v1 + (1− ρ1)∇pC (2.18a)

v2 ← ρ2v2 + (1− ρ2) (∇pC)2 (2.18b)

ṽ1 =
v1

1− ρt1
(2.18c)

ṽ2 =
v2

1− ρt2
(2.18d)

p← p− η√
ṽ2 + ε

ṽ1 (2.18e)

where t is time, i.e. ρt1 is ρ1 raised to the tth power. Time is incremented after

each update (i.e. after the value of p changes). The time step at which the above

equations occur is t + 1, and the initial values for v1 and v2 are both 0. Note

that the final equation (2.18e) is similar to the regular SGD update equation with

M = 1.

24

A possible modification to Adam is to add a decay parameter d such that for

time step t+1, instead of using η, the optimizer uses
η

1 + dt
. This leads to smoother

convergence.

Batch Normalization

Batch normalization [37] has been found to be an effective in training deep NNs.

Typically intermediate outputs are normalized before applying the activation func-

tion. Any variable x is normalized by subtracting its mean and dividing by its

standard deviation over a batch of samples, i.e. x ← x− µx
σx

. Following this, the

normalized variable is subjected to an affine transformation, i.e. x← γx+β, where

γ and β are trainable parameters.

2.4 Other types of networks

We introduced several core concepts of NNs using MLPs for classification. This is

because the primary focus of our achieved contributions are MLPs. However, we

have also experimented on other kinds of networks, and will continue to do so as

part of our expected contributions. A quick introduction to some other commonly

used forms of NNs are given below. The reader is encouraged to refer to [38] for

further exposition of related concepts.

25

Figure 2.4: Example of a simple CNN for object classification, showing convolution,
pooling and FC layers. Figure modified from [39].

2.4.1 Convolutional neural networks

These are mostly used for object detection and classification. Like MLPs, they are

also a form of ‘feedforward’ NNs (not to be confused with the FF operation) in

the sense that there are no state variables and cycles within the network. CNNs

primarily include convolution layers, which consist of a number of filters of

some window size, which perform a linear correlation operation on a group of

nodes in a left layer, then apply a non-linearity like ReLU to get the value of a

single node in the right layer. This is repeated for the next group of left nodes

until the whole left layer is covered, and then repeated for a certain number of

filters (also known as channels). CNNs also include pooling layers, which take

a group of left nodes and downsample them to create a single right node value.

Downsampling is done via an operation such as taking the maximum, or averaging.

Convolution and pooling layers are typically followed by a MLP, i.e. FC layers,

when doing classification. A simple CNN is shown in Fig. 2.4.

26

Figure 2.5: Example of a RNN with input x, states s and output o. Time is denoted
by t, while U , V and W denote linear operations. Non-linear operations are not shown
here for simplicity. Figure courtesy [40, Fig. 4].

2.4.2 Recurrent neural networks

Contrary to MLPs and CNNs, Recurrent Neural Network (RNN)s have internal

states and may have cycles in their network structure. They are primarily used

for learning dependencies over time, such as speech or video signals. Such an

input signal is broken up into segments in time and may be operated on in a way

similar to MLPs, i.e. a linear combination followed by a non-linearity, to generate

intermediate states and outputs at different instances of time. A RNN is shown in

Fig. 2.5.

27

Chapter 3

Pre-Defined Sparsity

This chapter discusses the major idea driving our research – pre-defined sparsity –

which deletes parameters and simplifies a NN prior to training. We will begin with

related work for complexity reduction of NNs. This also includes hardware imple-

mentations, which serve as related work for our own hardware efforts described in

Chapter 4.

3.1 Related Work

As mentioned in the Introduction, modern NNs suffer from parameter explosion

in the sense that the number of trainable parameters ranges from millions to bil-

lions [1, 5, 6, 34]. These demand large amounts of memory to store and arithmetic

resources to operate on, particularly during training. Moreover, training a network

with too many parameters makes it likely to overfit [41], and memorize undesirable

noise patterns [42]. However, most forms of complexity reduction aim to simplify

and accelerate the inference phase only, not the more complexity-intensive training

phase. Some of these are described next.

28

[10] used vector quantization to compress the weights of deep CNNs. [11]

grouped weights into hash buckets, effectively implementing a form of coarser

granularity in weight values. This approach is taken to its extreme by using only

values +1 and −1 for weights [43]. The efforts in [7, 12, 13] use a number of tech-

niques for reducing the storage footprint of the weights, such as deleting weights

with low values (pruning), retraining only necessary weights, and Huffman coding

for efficient storage. All these methods need to first train the fully connected (FC)

NN with all weights present, before deciding compression strategies for inference.

Similarly, other pruning and trimming methods post-process a trained FC NN to

remove weights [44–46].

One well-known method for reducing the size of NNs is dropout [47], where

some parameters of the NN are randomly deleted during each batch of training.

However, dropout is an ensemble method which actually increases overall training

complexity since many different configurations need to be trained. Moreover, the

final NN used for inference is FC, i.e. uncompressed. Other mathematical methods

employed during training include using low-precision arithmetic [48–50], special

matrices to structure the weights [51,52], and regularizers to discard unimportant

weights [53, 54] for inference, however, the latter two method classes lead to more

efficient inference at the cost of increased training complexity.

29

Some custom hardware implementations for NNs have been developed such as

Application Specific Integrated Circuit (ASIC)-based [13, 45, 55–58], and FPGA-

based [43, 44, 52, 59–61]. We note that while all these methods have achieved

excellent results in making inference faster and more efficient on-device, training

is typically done for the complete uncompressed network off-device, such as on a

power-hungry GPU or cloud server. Note that there have been some efforts in on-

device training [62–66]. However, these have not been targeted towards complexity

reduction and hence some have been limited to implementing NNs with a fairly

small number of total nodes – 21 in [64], 83 in [63], and a more impressive 221

in [62] (some of the pipelining ideas used in our hardware architecture described

in Chapter 4 were inspired by [62]).

In summary, based on related work and the present state of NNs, we identify

two open problems – a) Design methods and algorithms to reduce the complexity

of training NNs, and b) a flexible hardware architecture to support both low-

complexity training and inference on-device. This chapter proposes a method

aimed at tackling the first problem.

3.2 Structured Pre-defined sparsity

Pre-defined sparsity refers to a class of methods where a NN is made sparse by

removing some of its edges (connections) prior to training. This implies that both

30

training and inference use a NN of lower complexity as compared to a regular non-

sparse NN, such as one having FC layers. To the best of our knowledge, we are the

first to propose pre-defined sparsity as a technique for complexity reduction in [25].

Note that several other authors have recently proposed pre-defined sparsity [67–69]

independent of our work.

To understand pre-defined sparsity, we need to recall and add to the basic

definitions from Section 2.2. The out-degree of a node j in the left layer i− 1 of

junction i, douti
(j)

, is the total number of edges connecting it to layer i to its right.

Likewise, the in-degree of a node j in the right layer i of junction i, dini
(j)

, is the

total number of edges connecting it to layer i− 1 to its left. When these numbers

are constant for all nodes in a layer, the superscript can be omitted and we get

douti and dini for junction i. Note that for a conventional FC junction, douti = Ni

and dini = Ni−1. We refer to the total number of edges in junction i as |Wi|, thus

|Wi| = Ni−1Ni for FC.

ä Definition 1: Pre-defined sparsity : A junction i is pre-defined sparse if

it does not have all NiNi−1 edges present. A NN is pre-defined sparse if it has at

least one junction which is pre-defined sparse.

ä Definition 2: Structured pre-defined sparsity : Structured pre-defined

sparsity is pre-defined sparsity with fixed in- and out-degrees for each junction.

Thus, every node in layer i − 1 has a fixed douti ≤ Ni, and every node in

layer i has a fixed dini ≤ Ni−1. This leads to |Wi| = Ni−1d
out
i = Nid

in
i , thus

31

|Wi| ≤ Ni−1Ni. The density of junction i is measured relative to FC and denoted

as ρi = |Wi|/(Ni−1Ni). (Occasionally we may refer to sparsity as the opposite

of density, so a junction which is 20% dense is 80% sparse). As will be shown

in subsequent chapters, imposing the structured constraint leads to performance

improvement and ease of hardware implementation as compared to distributing

connections randomly. For the remainder of this work, pre-defined sparsity will

always refer to the structured form unless otherwise mentioned.

The overall density of a pre-defined sparse NN is defined as:

ρnet =

∑L
i=1 |Wi|∑L

i=1Ni−1Ni

=

∑L
i=1Ni−1d

out
i∑L

i=1Ni−1Ni

=

∑L
i=1Nid

in
i∑L

i=1Ni−1Ni

(3.1)

i.e. the total number of edges in the NN as a fraction of the total number of edges

in the corresponding FC NN. Thus, specifying Nnet = (N0, N1, · · · , NL) and either

of the out-degree configuration dout
net = (dout1 , dout2 , · · · , doutL) or the in-degree

configuration din
net = (din1 , d

in
2 , · · · , dinL) completely determines the density of each

junction and the overall density. Fig. 3.1 illustrates these basic concepts for a

simple MLP.

32

Figure 3.1: Illustrating basic concepts of structured pre-defined sparsity.

The ‘pre’ in pre-defined sparsity

We would like to emphasize that all densities of a pre-defined sparse NN are

set prior to training, and then held fixed throughout training and inference.

This means that the connection pattern, i.e. which node(s) connects to

which node(s) and which edges are present and absent, does not change for

the NN once it is set prior to training at the beginning.

Note that the concept of pre-defined sparsity as defined by us applies only to

MLPs. The connection pattern in CNNs is different – every node in a convolution

layer receives inputs from various filters applied to a localized region of the inputs

in its previous layer. For RNNs, a node may receive raw inputs and those from

adjacent network states, which themselves may be MLPs or CNNs. A complete

33

investigation of recurrent and convolution layers is beyond the scope of this work.

The concepts of pre-defined sparsity presented in this work are applied only to

MLP layers, however, as will be shown by our experiments, they extend to MLP

layers which may be part of a different network such as a CNN.

3.2.1 Motivation and Preliminary Examples

Pre-defined sparsity can be motivated by inspecting the histogram for trained

weight values in a FC NN. There have been previous efforts to study such statistics

[7,70], however, not for individual junctions. Fig. 3.2 shows weight histograms for

each junction in both a 2-junction and 4-junction FC NN trained on the MNIST

dataset on handwritten digit classification (datasets will be described in more

detail in Section 3.3.1). Note that many of the weights are zero or near-zero after

training, especially in the earlier junctions. This motivates the idea that some

weights in these junctions could be set to zero (i.e. the edges excluded).

Even with this intuition, it is unclear that one can pre-define a set of weights

to be zero and let the NN learn around this constraint. Fig. 3.2(c) and (h) show

that, in fact, this is the case – i.e. this shows classification accuracy performance

on the test set as a function of the overall density ρnet for structured pre-defined

sparsity. The circled point on the extreme right of each subfigure is the FC case.

Note that even at ρnet = 20%, the degradation in classification performance is

34

within 1%. Since the computational and storage complexity is directly propor-

tional to the number of edges in the NN, operating at an overall density of 20%

results in a 5X reduction in complexity both during training and inference. These

preliminary examples serve to show the effectiveness of pre-defined sparsity

in reducing complexity of NNs while incurring minimal performance

loss. Detailed numerical experiments in Section 3.3 will further build on these

preliminary examples.

3.2.2 Structured Constraints

In terms of the weight matrix, if junction i is pre-defined sparse, then Wi has

zeroes indicating the absence of edges and non-zero elements indicating the weight

values of present edges. Note that in the course of random initialization or training

updates, weight values of present edges can also become zero. However, the absent

edges in a NN will always remain absent, i.e. :

I
(
W

(j,:)
i 6= 0

)
≤ dini ∀j ∈ {1, · · · , Ni} (3.2a)

I
(
W

(:,k)
i 6= 0

)
≤ douti ∀k ∈ {1, · · · , Ni−1} (3.2b)

where I is the indicator function, which has value 1 if its argument is true, otherwise

0.

35

Figure 3.2: Histograms of weight values in different junctions for FC NNs trained
on MNIST for 50 epochs, with (a-b) Nnet = (800, 100, 10), and (d-g) Nnet =
(800, 100, 100, 100, 10). Test set classification accuracy shown in (c,h) for different NNs
with same Nnet and varying ρnet. The FC cases (ρnet = 100%) are circled to provide
a baseline. The remaining ρnet values are set by reducing ρ1 since junction 1 has more
weights close to zero in the FC cases.

Imposing the structured constraint restricts the number of possible density

values. As an example, the NN shown in Fig. 2.1 with Nnet = (4, 3, 2) cannot

have dout1 = 2 (i.e. ρ1 = 2/3) since that would lead to din1 = 8/3, and a node cannot

have a fractional number of connections. This leads to:

36

Theorem 1

For a given junction i, the total number of different ρi values possible is

equal to the Greatest Common Divisor (gcd) of Ni and Ni−1.

Proof: Consider a NN junction i. Its density ρi cannot be arbitrary, since

ρi = douti /Ni = dini /Ni−1, where douti and dini are natural numbers satisfying the

equation Ni−1d
out
i = Nid

in
i . Therefore, the number of possible ρi values is the same

as the number of
(
douti , dini

)
values satisfying the structured pre-defined sparsity

constraints:

douti =
Nid

in
i

Ni−1
, dini ≤ Ni−1, douti , dini ∈ N (3.3)

where N denotes the set of natural numbers.

The smallest value of dini which satisfies douti ∈ N is Ni−1/gcd(Ni−1, Ni), and

other values are its integer multiples. Since dini is upper bounded by Ni−1, the total

number of possible
(
douti , dini

)
is gcd(Ni−1, Ni). Thus, the set of possible ρi is

{
ρi ∈ (0, 1]

∣∣∣∣ ρi =
k

gcd(Ni−1, Ni)
, k ∈ N

}
. (3.4)

which is a set of cardinality equal to the gcd of Ni and Ni−1.

As a concrete example, consider a NN with Nnet = (117, 390, 13) (this will

arise in our experiments on the TIMIT dataset described in Section 3.3). The

37

number of possible junction densities are gcd(117, 390) = 39 and gcd(390, 13) = 13.

Therefore, the possible junction densities are:

ρ1 ∈
{

1

39
,

2

39
, · · · , 39

39

}
, ρ2 ∈

{
1

13
,

2

13
, · · · , 13

13

}
. (3.5)

The above proof and example for Theorem 1 was achieved in collaboration with

Kuan-Wen Huang.

3.2.3 Modifications to Neural Network Operations

The basic operations of a NN – FF, BP and UP – get modified for the case

of structured pre-defined sparsity. The primary change is that only the present

weights are used for computation, which leads to reduction in complexity. Now

we will present the modified equations for the commonly occurring case of one-hot

labels, cross-entropy cost, softmax activation for the output layer, and a scalar-

to-scalar activation applied element-wise to all other layers. The matrix-vector

products are split into summations to highlight usage of only the present weights.

The FF equations (2.7) become:

s
(j)
i =

dini∑
f=1

W
(j,kf)
i a

(kf)
i−1 + b

(j)
i (3.6a)

a
(j)
i = h

(
s
(j)
i

)
(3.6b)

h′
(j)
i =

∂a
(j)
i

∂s
(j)
i

(3.6c)

38

where (3.6a) and (3.6b) are ∀i ∈ {1, 2, · · · , L}, and (3.6c) is ∀i ∈ {1, 2, · · · , L−1}.

This is because softmax activation derivatives are directly combined with cross-

entropy cost derivatives in the final layer to give (3.7a), hence are not separately

required to be computed.

The BP equations (2.13) become:

δ
(j)
L = a

(j)
L − y

(j) (3.7a)

δ
(j)
i = h′

(j)
i

douti∑
f=1

W
(kf ,j)
i+1 δ

(kf)
i+1

 (3.7b)

where (3.7b) is ∀i ∈ {1, 2, · · · , L− 1}.

The UP equations (2.14), assuming batch size M = 1 to reduce clutter, become:

b
(j)
i ← b

(j)
i − ηδ

(j)
i (3.8a)

W
(j,k)
i ← W

(j,k)
i − ηa(k)i−1δ

(j)
i (3.8b)

where both (3.8a) and (3.8b) are ∀i ∈ {1, 2, · · · , L}, and (3.8b) is only for those

(j, k) node pairs which have an edge connecting them.

For all the equations (3.6)–(3.8) above, single superscript j refers to nodes in

a layer and hence has range {1, 2, · · · , Ni}. Double superscripts denote only those

edges which are present. For example, in (3.6a), the summation for a particular row

j of Wi is carried out over dini different values from W
(j,k1)
i to W

(j,k
din
i
)

i . Considering

Fig. 3.1 as a concrete example, when doing the computation for the 1st right

39

neuron in junction 1 (i.e. i = 1, j = 1), we get k1 = 5 and k2 = 7. This is because

nodes 5 and 7 from layer 0 connect to node 1 of layer 1.

This concludes the theory relating to pre-defined sparsity. In the next section,

we present performance results of pre-defined sparsity.

3.3 Performance Results, Trends and Guidelines

Fig. 3.2(c) and (h) showed some preliminary examples regarding the potential

of pre-defined sparsity to reduce complexity with minimal degradation in perfor-

mance. This section analyzes results and trends observed when experimenting

with several different classification datasets via software simulations. We intend

the following to provide guidelines on designing pre-defined sparse NNs.

Guidelines for designing pre-defined sparse NNs

1. The performance of pre-defined sparsity is better on datasets that have

more inherent redundancy (Section 3.3.2).

2. Junction density should increase to the right, i.e. junctions closer to

the output should generally have more density than junctions closer to

the input (Section 3.3.3).

3. Larger and more sparse NNs are better than smaller and denser NNs,

given the same number of layers and trainable parameters. Specifically,

‘larger’ refers to more hidden neurons (Section 3.3.4).

40

The reader is reminded that when we refer to pre-defined sparsity, we are

actually referring to structured pre-defined sparsity, i.e. fixed in- and out-degrees.

The remainder of this section first describes the datasets we experimented on, and

then examines these trends in detail.

3.3.1 Datasets and Experimental Configuration

NNs for classification need significant amounts of quality labeled data to train

and perform inference. Here we discuss some widely used datasets made publicly

available for this purpose, and the training configuration we designed for each of

them.

MNIST handwritten digits [71]

The Modified National Institute of Standards and Technology (MNIST) database

has 70,000 images of handwritten digits from 0 − 9, split into 60,000 for training

and 10,000 for test. We further split the training set into 50,000 for actual train-

ing and 10,000 for validation. Each image is 28 × 28 pixels of varying shades of

gray values, from 0 signifying completely black to 255 signifying completely white.

We rasterized each input image into a single layer of 784 features. This is the

permutation-invariant format, wherein spatial information from the inputs are not

used, implying that the ordering of the 784 pixels is not important. On certain

occasions we added 16 input features which are always trivially 0 so as to get 800

41

features for each input. This leads to easier selection of different sparse network

configurations. In Fig. 3.2(c) for example, we used 800 input neurons and 100

hidden neurons since gcd(800, 100) > gcd(784, 100), so more values of ρnet could

be simulated. We verified that adding extra always-0 input features did not alter

performance. Also note that no data augmentation was applied.

Reuters RCV1 corpus of newswire articles [72]

Reuters Corpus Volume I (RCV1) is an archive of newswire stories, each assigned

categories based on its content. The classification categories are grouped in a

tree structure, e.g. a top-level category like politics can be subdivided into second

level categories for international, national and state, international can be further

subdivided into third level categories for Asia, Africa and so on. An article can

have multiple categories, however, we used preprocessing techniques inspired by [4]

to isolate only those articles which belonged to a single second level category. We

finally obtained 328,669 articles in 50 categories, split into 50,000 for validation,

100,000 for test, and the remaining 178,669 for training.

The original data has a list of token strings for each story, for example, a story

on finance would frequently contain the token ‘financ’ (which can refer to ‘finance’,

‘financial’, ‘financier’ and so on). We chose the most common 2000 tokens across

all articles and computed counts for each of these in each article. Each count x

42

was transformed into log(1 + x) to form the final 2000-dimensional feature vector

for each input.

TIMIT speech corpus [73]

TIMIT (presumably abbreviated from Texas Instruments, Massachusetts Institute

of Technology) is a speech dataset comprising approximately 5.4 hours of 16 kHz

audio commonly used in ASR. A modern ASR system has three major components:

(i) preprocessing and feature extraction, (ii) acoustic model, and (iii) dictionary

and language model. A complete study of an ASR system is beyond the scope of

this work. Instead we focus on the acoustic model which is typically implemented

using a NN. The input to the acoustic model is feature vectors and the output is

a probability distribution on phonemes (i.e. speech sounds), i.e. the classification

targets for our experiments are different phonemes. We used a phoneme set of size

39 as defined in [74].

We extracted 25ms speech frames with 10ms shift, as in [4], and computed a

feature vector of 39 Mel-frequency Cepstral Coefficient (MFCC)s for each frame.

MFCCs are obtained from a sequence of operations – windowing, Fourier trans-

form, mapping powers on to mel scale [75], taking logarithm, discrete cosine trans-

form, measuring amplitude. We used the complete training set of 818,837 training

samples (462 speakers), 89,319 validation samples (50 speakers), and 212,093 test

samples (118 speakers).

43

CIFAR-100 images [76]

The Canadian Institute For Advanced Research (CIFAR) datasets come in two

forms – 10 classes, and 100 classes. Each has 50,000 training samples (which we

split into 40,000 for actual training and 10,000 for validation), and 10,000 test

samples. The samples are 32 × 32 × 3 (for 3 color channels – red, green and

blue) images of objects such as different vehicles and animals. We experimented

on the CIFAR-100 dataset with a CNN. The CNN has 3 blocks, each block has 2

convolution layers with window size 3× 3 followed by a max pooling layer of pool

size 2 × 2. The number of filters for the six convolution layers are (from left to

right) 60, 60, 125, 125, 250 and 250. This results in a total of approximately one

million trainable parameters in the convolutional portion of the network. Batch

normalization is applied before activations. The output from the 3rd block, after

flattening into a vector, has 4000 features. This is the input to a MLP. Typically

dropout is applied in the MLP portion, however we omitted it there since pre-

defined sparsity is an alternate form of parameter reduction. Instead we found

that a dropout probability of 0.5, i.e. half the nodes and weights dropped for each

batch of training, applied to the convolution blocks improved performance. No

data augmentation was applied.

44

Experimental Configuration

For each dataset, we performed classification using one-hot labels and measured

accuracy on the test set as a performance metric.1 We also calculated the top-5

test set classification accuracy for CIFAR-100, i.e. the percentage of samples for

which the ground-truth label was among the top 5 softmax outputs of the network.

We found the optimal training configuration and hyperparameters for each FC

setup by doing a grid search using validation performance as a metric. This resulted

in choosing ReLU activations for all layers except for the final softmax layer. He

initialization worked best for the weights; while for biases, we found that an initial

value of 0.1 worked best in all cases except for Reuters, for which zeroes worked

better. The Adam optimizer was used with all parameters set to default, except

that we set the decay parameter to 10−5 for best results. We used a batch size of

1024 for TIMIT and Reuters since the number of training samples is large, and 256

for MNIST and CIFAR. All experiments were run for 50 epochs of training and all

1The NN in a complete ASR system would be a ‘soft’ classifier and feed the phoneme distribu-
tion outputs to a decoder to perform ‘hard’ final classification decisions. Therefore for TIMIT, we
computed another performance metric called Test Prediction Comparison (TPC), measured as
KL divergence between predicted test output probability distributions of sparse vs the respective
FC case. In other words,

TPC =
1

212093

212093∑
i=1

39∑
j=1

Aij log

(
Aij

Bij

)
(3.9)

where A
212093×39

and B
212093×39

are the complete output test matrices for the 212,093 test samples

with 39 labels each for the FC and sparse cases, respectively. Lesser values of TPC are better as
they indicate minimal performance degradation due to sparsification. We found that performance
results obtained using the TPC metric were qualitatively very similar to those obtained from the
test accuracy metric, hence we omit the TPC results.

45

hyperparameters listed so far were kept the same when sparsifying the network to

maintain consistency.

The only exception is regularization. We found from validation that sparser

networks need lesser regularization than denser networks. This confirms our belief

that pre-defined sparse NNs are less prone to overfitting due to having

fewer trainable parameters. Accordingly we applied an L2 penalty to the

weights, but reduced the coefficient λ as ρnet decreased.

Each experiment was run at least five times to average out randomness and the

90% Confidence Interval (CI)s for each metric are shown as shaded regions (this

also holds for the results in Fig. 3.2(c,h)).

3.3.2 Dataset Redundancy

Many machine learning datasets have considerable redundancy in their input fea-

tures. For example, one may not need information from the ∼800 input features of

MNIST to infer the correct image class. We hypothesize that pre-defined sparsity

takes advantage of this redundancy, and will be less effective when the redundancy

is reduced. To test this, we changed the feature vector for each dataset as follows:

• MNIST: Principal Component Analysis (PCA) is a technique to compute

variances in each feature across all inputs in the dataset, and assign more

‘importance’ to features with large variance. This is because such features

are more discriminatory, i.e. observing their values will provide the network

46

with more information. We used PCA to reduce the feature count of MNIST

to the most important (least redundant) 200, i.e. a factor of ∼4X.

• Reuters: Size of the feature vector is the number of most frequent tokens

considered. We reduced this from 2000 to 400, i.e. by 5X.

• TIMIT: We both reduced and increased the number of MFCCs by 3X to 13

and 117, respectively. Note that the latter increases redundancy.

• CIFAR-100: In the CNN used for CIFAR, a source of redundancy is the depth

of the convolution+pooling portion which extracts features and discriminates

between classes before the MLP performs final classification. In other words,

the convolution blocks ease the burden of the MLP. So a way to reduce

redundancy and increase the classification burden of the MLP is to lessen the

effectiveness of the convolution layers by reducing their number. Accordingly,

we used a single convolution layer with 250 filters of window size 5×5 followed

by a 8 × 8 max pooling layer. This results in the same number of features,

4000, at the input of the MLP as the original network, but has reduced

redundancy for the MLP.

Classification performance results are shown in Fig. 3.3 as a function of ρnet.

For MNIST and CIFAR-100, the performance degrades more sharply with reduc-

ing ρnet for the networks using the reduced redundancy datasets. To explore this

further, we recreated the histograms from Fig. 3.2 for the reduced redundancy

47

Figure 3.3: Comparison of classification accuracy as a function of ρnet for different
versions of datasets – original, reduced in redundancy by reducing feature space (MNIST,
Reuters, TIMIT) or performing less processing prior to the MLP (CIFAR-100), and
increasing redundancy by enlarging feature space (TIMIT). Higher density points for
MNIST are magnified.

datasets, i.e. a FC NN with Nnet = (200, 100, 10) training on MNIST after PCA.

We observed a wider spread of weight values, implying less opportunity for sparsi-

fication (i.e. fewer weights were close to zero), as shown in Fig. 3.4. Similar trends

are less discernible for Reuters and TIMIT, however, reducing redundancy led to

worse performance overall.

48

Figure 3.4: Comparing histograms of weight values for (a) original MNIST with Nnet =
(800, 100, 10), and (b) MNIST reduced to least redundant 200 features such that Nnet =
(200, 100, 10), after training FC NNs for both.

The results in Fig. 3.3 further demonstrate the effectiveness of pre-defined

sparsity in greatly reducing network complexity with negligible performance degra-

dation. For example, even the reduced redundancy problems perform well when

operating with half the number of connections. For CIFAR in particular, FC per-

forms worse than an overall MLP density of around 20%. Thus, in addition to

reducing complexity, structured pre-defined sparsity may be viewed as an alterna-

tive to dropout in the MLP for the purpose of improving classification.

3.3.3 Individual junction densities

The weight value histograms in Figs. 3.2 and 3.4 indicate that latter junctions,

particularly junction L closest to the output, have a wide spread of weight values.

49

This suggests that a good strategy for reducing ρnet would be to use lower densities

in earlier junctions, i.e. ρ1 < ρL.

This is demonstrated in Fig. 3.5 for the cases of MNIST, CIFAR-100 and

Reuters, each with L = 2 junctions in their MLPs. Each curve in each subfigure

is for a fixed ρ2, i.e. reducing ρnet across a curve is done solely by reducing ρ1. For

a fixed ρnet, the performance improves as ρ2 increases. For example, the circled

points in Reuters both have ρnet = 4%, but the starred point with ρ2 = 100% has

approximately 40% better test accuracy than the pentagonal point with ρ2 = 2%.

The trend clearly holds for MNIST and Reuters, and is also discernible for CIFAR-

100.

This trend extends to NNs with more than two junctions. Fig. 3.6 compares

classification performance by trading off ρ2 and ρ3 (keeping ρ1 fixed) for different

three-junction NNs training on MNIST. For each individual plotted curve (same

color), ρ3 is kept constant and ρnet is varied by varying ρ2. Note that all the

results are qualitatively similar to Fig. 3.5, i.e. for the same ρnet, better results are

obtained for higher values of ρ3. Note that ρ1 is fixed for each subfigure at fairly

low values, as given in the caption of Fig. 3.6. We also experimented with keeping

ρ1 fixed at higher values, such as 50%. Since the input layer has the most neurons,

this resulted in junction 1 dominating the total number of weights. As a result,

changing ρ2 and ρ3 had little effect on accuracy. Hence we decided to include the

more interesting low ρ1 cases in Fig. 3.6.

50

Figure 3.5: Comparison of classification accuracy as a function of ρnet for different ρL,
where L = 2. Black-circled points show the effects of ρ2 when ρnet is the same. Nnet

values are (800, 100, 10) for MNIST, (2000, 50, 50) for Reuters, and (4000, 500, 100) for
the MLP portion in CIFAR-100.

Figure 3.6: Comparison of classification accuracy as a function of ρnet for ρ2 vs ρ3
in three-junction MNIST networks, keeping ρ1 fixed. (a) Nnet = (800, 100, 100, 10),
ρ1 = 10%, (b) Nnet = (800, 100, 200, 10), ρ1 = 4%, (c) Nnet = (800, 200, 100, 10),
ρ1 = 1%.

51

Figure 3.7: Comparison of classification accuracy as a function of ρnet for: (a) TIMIT
with 39 MFCCs for the two cases where one junction is always sparser than the other and
vice-versa. Black-circled points show how reducing ρ1 degrades performance to a greater
extent. (b) TIMIT with 13 MFCCs for different ρ1. (c,d) TIMIT with 117 MFCCs, and
Reuters reduced to 400 tokens, for different ρ2. Nnet values are (a) (39, 390, 39), (b)
(13, 390, 39), (c) (117, 390, 39), (d) (400, 50, 50).

We further observed that this trend of ρi+1 > ρi improving performance is

related to the redundancy inherent in the dataset, and may not hold for datasets

with very low levels of redundancy. To explore this, results analogous to those

in Fig. 3.5 are presented in Fig. 3.7 for TIMIT, but with varying sized MFCC

feature vectors – i.e. datasets corresponding to larger feature vectors will contain

52

more redundancy. The results in Fig. 3.7(c) are for 117-dimensional MFCCs and

are consistent with the trend in Fig. 3.5. However, for a MFCC dimension of 13,

this trend actually reverses – i.e. junction 1 should have higher density for better

performance. This is shown in Fig. 3.7(b), where each curve is for a fixed ρ1. This

reversed trend is also observed for the case of 39 dimensional feature vectors, con-

sidered in Fig. 3.7(a), where Nnet = (39, 390, 39). Due to this symmetric neuronal

configuration, for each value of ρnet on the x-axis in Fig. 3.7(a), the two curves have

complementary values of ρ1 and ρ2 (ρ1 6= ρ2) – e.g. the two curves at ρnet = 7.69%

have (ρ1, ρ2) values of (2.56%, 12.82%) and (12.82%, 2.56%). We observe that the

curve for ρ1 < ρ2 is generally worse than the curve for ρ2 < ρ1, which indicates

that junction 1 should have higher density for improving performance in this case

as well.

Fig. 3.7(d) depicts the results for Reuters with the feature vector size reduced

to 400 tokens. While junction 2 is still more important (as in Fig. 3.5(c) for

the original Reuters dataset), notice the circled star-point at the very left of the

ρ2 = 100% curve. This point has very low ρ1. Unlike Fig. 3.5(c), it crosses below

the other curves, indicating that it is more important to have higher density in the

first junction with this less redundant set of features.

In summary, if an individual junction density falls below a certain value,

referred to as the critical junction density, it will adversely affect performance

regardless of the density of other junctions. This explains why some of the curves

53

cross in Fig. 3.7. The critical junction density is much smaller for earlier junctions

than for later junctions in most datasets with sufficient redundancy. However, the

critical density for earlier junctions increases for datasets with low redundancy.

3.3.4 ‘Large and sparse’ vs ‘small and dense’ networks

As mentioned previously, NNs with lower values of ρnet need lower values of the

L2 penalty coefficient λ for regularization. This raises the question – why not

design a small FC NN, i.e. one with a small number of nodes in its layers? This

would also have a low number of parameters to begin with and would thus have

low complexity.

We experimented with this aspect and observed that when keeping the total

number of trainable parameters the same, sparser NNs with larger hidden layers

(i.e. more neurons) generally performed better than denser networks with smaller

hidden layers. This is true as long as the larger NN is not so sparse that individual

junction densities fall below the critical density, as explained in Sec. 3.3.3. While

the critical density is problem-dependent, it is usually low enough to obtain sig-

nificant complexity savings above it. Thus, ‘large and sparse’ is better than ‘small

and dense’ for many practical cases, including NNs with more than one hidden

layer (i.e. L > 2).

Fig. 3.8 shows this for networks having one (two) and three (four) hidden lay-

ers (junctions) trained on MNIST. For the four-junction network, all hidden layers

54

Figure 3.8: Comparing ‘large and sparse’ to ‘small and dense’ networks for MNIST with
784 features, with (a) Nnet = (784, x, 10) (on the left), and (b) Nnet = (784, x, x, x, 10)
(on the right). Solid curves (with the shaded CIs around them) are for constant x, black
dashed curves with same marker are for same number of trainable parameters. The final
junction is always FC. Intermediate junctions for the L = 4 case have dout values similar
to junction 1.

have the same number of neurons. Each solid curve shows classification perfor-

mance vs ρnet for a particular Nnet, while the black dashed curves with identical

markers are configurations that have approximately the same number of train-

able parameters. As an example, the points with circular markers (with a big

blue ellipse around them) in Fig. 3.8(b) all have the same number of trainable

parameters and indicate that the larger, more sparse NNs perform better. Specif-

ically, the network with Nnet = (784, 112, 112, 112, 10) and dout
net = (10, 10, 10, 10)

corresponding to ρnet = 9.82% performs significantly better than the FC network

with Nnet = (784, 14, 14, 14, 10), and other smaller and denser networks, despite

each having 11,500 trainable parameters. Increasing the network size further to

55

Figure 3.9: Comparing ‘large and sparse’ to ‘small and dense’ networks for Reuters with
2000 tokens, with Nnet = (2000, x, 50). The x-axis is split into higher values on the left
(a), and lower values on the right in log scale (b). Solid curves (with the shaded CIs
around them) are for constant x, black dashed curves with same marker are for same
number of trainable parameters. Junction 1 is sparsified first until its number of total
weights is approximately equal to that of junction 2, then both are sparsified equally.

Nnet = (784, 224, 224, 224, 10), and reducing ρnet to 4% to fix the number of train-

able parameters at 11,500 leads to performance degradation. This is because this

ρnet was achieved by setting ρ2 = ρ3 = 2.68%, which appears to be below the

critical density.

Fig. 3.9 summarizes the analogous experiment on Reuters with similar conclu-

sions. Both subfigures are for the same results with the x-axis split into higher and

lower density range (on log scale), to show more detail. Observe that the trend of

‘large and sparse’ being better than ‘small and dense’ holds for subfigure (a), but

reverses for (b) since densities are very low (the black dashed curves have positive

slope instead of negative). This is due to the critical density effect.

56

Figure 3.10: Comparing ‘large and sparse’ to ‘small and dense’ networks for (a) TIMIT
with 39 MFCCs and Nnet = (39, x, x, x, x, 39) (on the left), and (b) CIFAR-100 with the
deep 9-layer CNN and MLP Nnet = (4000, x, 100) with log scale for the x-axis (on the
right). Solid curves (with the shaded CIs around them) are for constant x, black dashed
curves with same marker are for same number of trainable parameters (in the MLP
portion only for CIFAR). Since TIMIT has symmetric junctions, we tried to keep input
and output junction densities as close as possible and adjusted intermediate junction
densities to get the desired ρnet. CIFAR-100 is sparsified in a way similar to Reuters in
Fig. 3.9.

Fig. 3.10(a) shows the result for the same experiment on TIMIT with four

hidden layers. The trend is less clearly discernible, but it exists. Notice how the

black dashed curves have negative slopes at appreciable levels of ρnet, indicating

‘large and sparse’ being better than ‘small and dense’, but high positive slopes

at low ρnet, indicating the rapid degradation in performance as density is reduced

beyond the critical density. This is exacerbated by the fact that TIMIT with 39

MFCCs is a dataset with low redundancy, so the effects of very low ρnet are better

observed.

57

Fig. 3.10(b) for the MLP portion of CIFAR-100 shows similar results as TIMIT,

but on a log x-scale for more clarity. As noted in Sec. 3.3.2, the best performance

for a given Nnet occurs at an overall density less than 100%. It appears that for

any Nnet for CIFAR-100, peak performance occurs at around 10–20% overall MLP

density. We are intrigued by this trend, and plan to investigate further.

Some results have been omitted due to being qualitatively similar to those

already shown. These are experiments on TIMIT with L = 2 (similar to 3.10(a)),

Reuters with L = 3 (similar to 3.9), and CIFAR100 with the reduced redundancy

having a single convolutional layer (similar to 3.10(b)).

3.4 Summary

This chapter introduced the concept of pre-defined sparsity as a method of com-

plexity reduction and presented performance results indicating its effectiveness and

delineating trends to design such sparse NNs. The next chapter will present a con-

crete application of complexity reduction – a hardware architecture we designed

and implemented to leverage pre-defined sparsity.

58

Chapter 4

Hardware Architecture

This chapter describes our proposed flexible hardware architecture which can lever-

age structured pre-defined sparsity to both train and test NNs of any complexity

on-device. We begin with an overview of the key features, which are encapsulated

in Fig. 4.1.

ä Definition 3: Degree of parallelism : The degree of parallelism zi is the

number of edges processed in parallel in junction i.

Thus, we call our architecture edge-based. zi determines the number of clock

cycles taken to process a complete junction. Fig. 4.1(a) shows an example junction

i with 6 edges processed using zi = 3. The zi = 3 blue edges are processed in cycle

0 (we begin numbering from 0), and the remaining zi = 3 pink edges in cycle 1. A

given hardware device can support some largest values of {zi}, so NNs with more

edges will simply take more cycles to process.

For a given processing operation in junction i, there are zi computational units

to perform it and zi memories to store each quantity associated with it. This is

shown in Fig. 4.1(b) for the FF operation, i.e. there are zi = 3 computational

59

Figure 4.1: (a) Processing zi = 3 edges in each cycle (blue in cycle 0, pink in cycle
1) for some junction i with a total of 6 edges. (b) Accessing zi = 3 memories – M0,
M1 and M2 shown as columns – from two separate banks, one in natural order (same
address from each memory), the other in interleaved order. Clash-freedom is achieved
by accessing only one element from each memory. The accessed values are fed to zi = 3
processors to perform FF simultaneously. (c) Operational parallelism in each junction
(vertical dotted lines denote processing for one junction), and junction pipelining of each
operation across junctions (horizontal dashed lines) for different inputs.

units FF0–FF2. A challenge with this architecture is that in order to achieve high-

throughput without memory duplication, the parallel memories must be accessed

in two manners: natural order and interleaved order. Natural order accesses

60

memory elements sequentially. Interleaved order leads to the possibility of memory

contention. This leads us to define:

ä Definition 4: Clash : A clash arises if the same memory needs to be accessed

multiple times in the same cycle, which may lead to stalls and/or wait states.1

ä Definition 5: Clash-free: The clash-free condition occurs when the NN

connection pattern and hardware architecture is designed such that no clashes

occur during memory accesses.

Thus, the zi computational units must access the memories such that no clashes

and memory contention occur. Natural and interleaved order accesses are shown

for zi = 3 memories on the bottom and top of Fig. 4.1(b), respectively. Notice

that there is only one shaded cell per column in cycle 0. The unshaded cells will

be accessed in cycle 1. The concept of clash-freedom is tied to the connection

patterns in the junctions, as will be expounded in Chapter 5.

Apart from clash-freedom to maximize throughput, some other characteristics

regarding memory requirements guided us in developing the proposed architecture.

Firstly, since weight memories are the largest (i.e. the number of weights is more

than any other network parameter), their number should be minimized. Secondly,

having a few deep memories is more efficient in terms of power and area than

1Some multi-ported memories can be accessed more than once in a cycle, however, clashes can
still occur when trying to access more elements than the number of ports. To be more specific, a)
for single-ported memories, attempting two reads or two writes or a read and a write in the same
cycle is a clash, and b) for simple dual-ported memories with one port exclusively for reading
and the other exclusively for writing, a read and a write can be performed in the same cycle, but
attempting to perform two reads or two writes in the same cycle will result in a clash.

61

having many shallow memories [77]. These help to alleviate the key concern of large

storage requirement when implementing NNs in hardware. Memory organization

is described in Section 4.2.

In addition to edge processing in a given junction, our architecture is pipelined

across junctions. Thus, the zi values are selected to set the number of cycles

required to process a layer to a constant – i.e. junctions with more weights have

larger zi so that the computation time of all junctions is the same. Furthermore,

the three operations associated with training are performed in parallel,

i.e. FF, BP, and UP. These concepts are shown in Fig. 4.1(c) and elaborated

in Section 4.1. An (L + 1)-layer NN has L junction pipeline stages so that the

throughput, i.e. the frequency of processing input samples, is determined by the

time taken to perform a single operation in a single junction.

Summary of architectural features

1. Edge-based, i.e. not tied to a specific number of nodes in a layer.

2. Flexible, i.e. the amount of logic is determined by the degree of par-

allelism which trades size for speed. This means that the architecture

is also compatible with conventional FC junctions, as will be shown in

Section 4.6.

62

3. Fully pipelined for the parallel operations associated with NN training.

The architecture can also operate in inference only mode by eliminat-

ing the logic and memory associated with BP and UP, and the h′

computations in (3.6c).

4.1 Junction pipelining and Operational paral-

lelism

Our edge-based architecture is motivated by the fact that all three operations – FF,

BP, UP – use the same weight values for computation. Since zi edges are processed

in parallel in a single cycle, the time taken to complete an operation in junction

i is Ci = |Wi| /zi cycles. The degree of parallelism configuration znet =

(z1, · · · , zL) is chosen to achieve Ci = C ∀ i ∈ {1, · · · , L}. This allows efficient

junction pipelining since each operation takes exactly C cycles to be completed

for each input in each junction, which we refer to as a junction cycle. This

determines throughput.

The following is an analysis of Fig. 4.1(c) in more detail for an example NN

with L = 2. While a new training input numbered n + 3 is getting loaded as a0,

junction 1 is processing the FF stage for the previous input n+ 2 and computing

a1. Simultaneously, junction 2 is processing FF and computing cost δL via cost

63

Figure 4.2: Architecture for parallel operations for an intermediate junction i (i 6= 1, L)
showing the three operations along with associated inputs and outputs. Natural and
interleaved order accesses are shown using solid and dashed lines, respectively. The a
and h′ memory banks occur as queues, the δ memory banks as pairs, while there is a
single weight memory bank.

derivatives for input n + 1. It is also doing BP on input n to compute δ1, as well

as updating (UP) its parameters from the finished δL computation of input n.

Simultaneously, junction 1 is performing UP using δ1 from the finished BP results

of input n− 1.2 This results in operational parallelism in each junction, as shown

in Fig. 4.2. The combined speedup is approximately a factor of 3L as compared

to doing one operation at a time for a single input.

Notice from Fig. 4.2 that there is only one weight memory bank which is

accessed for all three operations. However, UP in junction 1 needs access to a0 for

input n−1, as per the weight update equation (3.8b). This means that there need

to be 2L+1 = 5 left activation memory banks for storing a0 for inputs n−1 to n+3,

2Note that BP does not occur in the first junction because there are no δ0 values to be
computed

64

Table 4.1: Hardware Architecture Total Storage Cost Comparison for Nnet =
(800, 100, 10) FC vs sparse with dout

net = (20, 10), ρnet = 21%

Parameter Expression Count (FC) Count (sparse)

a
∑L−1

i=0 (2(L− i) + 1)Ni 4300 4300

h′
∑L−1

i=1 (2(L− i) + 1)Ni 300 300

δ 2
∑L

i=1Ni 220 220

b
∑L

i=1Ni 110 110

W
∑L

i=1Nid
in
i 81000 17000

TOTAL Σ (All above) 85930 21930

i.e. a queue-like structure. Similarly, UP in junction 2 will need 2(L− 1) + 1 = 3

queued banks for each of its left activation a1 and its derivative h′1 memories –

for inputs from n (for which values will be read) to n + 2 (for which values are

being computed and written). There also need to be 2 banks for all δ memories –

1 for reading and the other for writing. Thus junction pipelining requires multiple

memory banks, but only for layer parameters a, h′ and δ, not for weights. The

number of layer parameters is insignificant compared to the number of weights for

practical networks. This is why pre-defined sparsity leads to significant storage

savings, as quantified in Table 4.1 for the circled FC point vs the ρnet = 21%

point from Fig. 3.2(c). Specifically, memory requirements are reduced by 3.9X

in this case. Furthermore, the computational complexity, which is proportional

to the number of weights for a MLP, is reduced by 4.8X. For this example, these

complexity reductions come at a cost of degrading the classification accuracy from

98.0% to 97.2%.

65

4.2 Memory organization

For the purposes of memory organization, edges are numbered sequentially from

top to bottom on the right side of the junction. Other network parameters such

as a, h′ and δ are numbered according to the neuron numbers in their respective

layer. Consider Fig. 4.3 as an example, where junction i is flanked by Ni−1 = 12

left neurons with douti = 2 and Ni = 8 right neurons, leading to |Wi| = 24 and

dini = 3. The three weights connecting to right neuron 0 are numbered 0, 1, 2;

the next three connecting to right neuron 1 are numbered 3, 4, 5, and so on. A

particular right neuron connects to some subset of left neurons of cardinality dini .

Each type of network parameter is stored in a bank of memories. The

example in Fig. 4.3 uses zi = 4, i.e. 4 weights are accessed per cycle. We designed

the weight memory bank to have the minimum number of memories to prevent

clashes, i.e. zi, and their depth equals Ci. Weight memories are read in natural

order – 1 row per cycle (shown in same color).

Right neurons are processed sequentially due to the weight numbering. The

number of right neuron parameters of a particular type needing to be accessed in

a cycle is upper bounded by
⌈
zi/d

in
i

⌉
, which leads to zi+1 ≥

⌈
zi/d

in
i

⌉
in order to

prevent clashes in the right memory bank. (This does not limit most practical

designs, as will be shown in Section 4.5). For FF in Fig. 4.3 for example, cycles

0 and 1 finish computation of a
(0)
i and a

(1)
i respectively, while cycle 2 finishes

computing both a
(2)
i and a

(3)
i . For BP or UP, everything remains same except for

66

Figure 4.3: An example of processing inside junction i with zi = 4 memories in the
weight and left banks, and zi+1 = 2 memories in the right bank. The banks are repre-
sented as numerical grids, each column is a memory, and the number in each cell is the
number of the edge / left neuron / right neuron whose parameter value is stored in it.
Edge are sequentially numbered on the right (shown in curly braces). zi = 4 weights are
read in each of the six cycles, with the first three colored blue, pink and green, respec-
tively. These represent sweep 0, while the next 3 (using dashed lines) colored brown,
red and purple, respectively, represent sweep 1. Clash-freedom leads to at most one cell
from each memory in each bank being accessed each cycle. Weight and right memories
are accessed in natural order, while left memories are accessed in interleaved order.

the right memory accesses. Now δ
(0)
i and δ

(1)
i are used in cycle 0, δ

(1)
i and δ

(2)
i in

cycle 1, and δ
(2)
i and δ

(3)
i in cycle 2. Thus the maximum number of right neuron

parameters ever accessed in a cycle is
⌈
zi/d

in
i

⌉
= 2.

67

Since edges are interleaved on the left, in general, the zi edge processing logic

units will need access to zi parameters of a particular type from layer i − 1. So

all the left memory banks have zi memories, each of depth Di = Ni−1/zi, which

are accessed in interleaved order. For example, after Di cycles, Ni−1 edges have

been processed – i.e. (Di × zi) = Ni−1. We require that each of these edges be

connected to a different left neuron to eliminates the possibility of duplicate edges.

This completes a sweep, i.e. one complete access of the left memory bank. Since

each left neuron connects to douti edges, douti sweeps are required to process all the

edges, i.e. each left activation is read douti times in the whole junction cycle. The

reader can verify that Di cycles multiplied by douti sweeps results in Ci total cycles,

i.e. one junction cycle.

4.3 Clash-freedom

We define a clash as attempting to perform a particular operation more than once

on the same memory at the same time, which would stall processing. The idea of

clash-freedom is to pre-define a pattern of connections and z values such that no

operation in any junction of the NN results in a clash. Section 4.2 described how

z values should be designed to prevent clashes in the weight and right memory

banks.

This subsection analyzes the left memory banks, which are accessed in inter-

leaved order. Their memory access pattern should be designed so as to prevent

68

clashes. Additionally, the following properties are desired for practical clash-free

patterns. Firstly, it should be easy to find a pattern that gives good performance.

Secondly, the logic and storage required to generate the left memory addresses

should be low complexity.

We generate clash-free patterns by initially specifying the left memory addresses

to be accessed in cycle 0 using a seed vector φi ∈ {0, 1, · · · , Di − 1}zi . Subse-

quent addresses are cyclically generated. Considering Fig. 4.3 as an example,

φi = (1, 0, 2, 2). Thus in cycle 0, we access addresses (1, 0, 2, 2) from memo-

ries (M0,M1,M2,M3), i.e. left neurons (4, 1, 10, 11). In cycle 1, the accessed

addresses are (φi + 1) %Di = (2, 1, 0, 0), and so on. Since Di = 3, cycles 3–5

access the same left neurons as cycles 0–2.

We found that this technique results in a large number of possible connection

patterns, and randomly sampling from this set results in performance comparable

with non-clash-free NNs. These ideas are further discussed in Chapter 5.

4.4 Batch size

As shown in (2.14), for a batch size of M , the UP operation in (3.8) is performed

only once for M inputs by using the average over the M gradients. Our architec-

ture performs an UP for every input and therefore may be viewed as having batch

size one. However, the processing in our architecture differs from a typical software

69

implementation with M = 1 due to the pipelined and parallel operations. Specifi-

cally, in our architecture, FF and BP for the same input use different weights, as

implied by Fig. 4.1(c). However, this deviation from the conventional notion of

batch size did not result in performance degradation in our initial hardware imple-

mentation (presented in Section 4.7). We would also like to point out that there

is considerable ambiguity in the literature regarding ideal batch sizes (cf. [21,78]).

The concept of batch size for our architecture can be modified in several differ-

ent ways. Firstly, by performing UP once every (M > 1) samples. As an example,

a practical case for a deep MLP could be M = 64 and L = 5. For all such

cases where M >> L, FF and BP will use the same weights for most inputs in a

batch. Secondly, a more conventional minibatch update can also be obtained by

completely removing the UP logic from the junction pipeline. After performing

FF and BP on M samples, the pipeline will be flushed and the averaged gradients

over M samples used to update all parameters in all junctions simultaneously. This

would eliminate the UP arithmetic units from the pipeline, at the cost of increased

storage for accumulating intermediate values from (3.8). However, we have not

implemented these ideas in actual hardware yet.

4.5 Architectural Constraints

The depth of left memories in our hardware architecture is Di = Ni−1/zi. Thus

Ni−1 should preferably be an integral multiple of zi. This is not a burdening

70

constraint since the choice of zi is independent of network parameters and depends

on the capacity of the device. In the unusual case that this constraint cannot be

met, the extra cells in memories can be filled with dummy values such as 0.

There are also 2 conditions placed on the zi values to eliminate stalls in pro-

cessing: for all layers i ∈ {1, · · · , L}, (i) |Wi| /zi = C, and (ii) zi+1 ≥
⌈
zi/d

in
i

⌉
. Let

us examine how much of a burden these constraints impose on choosing a network

configuration. Without loss of generality, (i) can be written as:

|Wi+1|
zi+1

=
|Wi|
zi

⇒ zi+1 =
|Wi+1| zi
|Wi|

⇒ zi+1 =
zid

out
i+1

dini
(4.1)

Then (ii) becomes:

zid
out
i+1

dini
≥
⌈
zi
dini

⌉
⇒ douti+1 ≥

dini
zi

⌈
zi
dini

⌉
(4.2)

which needs to be satisfied ∀ i ∈ {1, · · · , L− 1}.

In practice, it is desirable to design zi/d
in
i to be an integer so that an integral

number of right neurons finish processing every cycle. This simplifies hardware

implementation by eliminating the need for additional storage, for example, of the

71

intermediate activation values during FF. In this case, (4.2) reduces to douti+1 ≥ 1,

which is always true.

For non-integral zi/d
in
i , there are two cases. If zi > dini , (4.2) reduces to douti+1 ≥ 2.

On the other hand, if zi < dini , there is no bound on the right hand side of (4.2). In

general, note that (4.2) becomes a burdening constraint only if dini is large, and douti+1

and zi are both desired to be small. This corresponds to earlier junctions being

denser than later, which is typically not desirable according to the observations in

Sec. 3.3.3, or to very limited hardware resources. We thus conclude that (4.2) is

not a limiting constraint in most practical cases.

4.6 Special Case: Processing a FC junction

Fig. 4.4 shows the FC version of the junction from Fig. 4.3, which has 96 edges

to be accessed and operated on. This can be done keeping the same junction cycle

Ci = 6 by increasing zi to 16, i.e. using more hardware. On the other hand, if

hardware resources are limited, one can use the same zi = 4 and pay the price

of a longer junction cycle Ci = 24, as shown in Fig. 4.4. This demonstrates the

flexibility of our architecture.

Note that FC junctions are clash-free in all practical cases due to the following

reasons. Firstly, the left memory accesses are in natural order just like the weights,

which ensures that no more than one element is accessed from each memory per

cycle. Secondly,
⌈
zi/d

in
i

⌉
= 1 for all practical cases since zi ≤ Ni−1, as discussed

72

Figure 4.4: Processing the FC version of the junction from Fig. 4.3. For clarity, only
the first 12 and last 12 edges (dashed) are shown, corresponding respectively to right
neurons 0 and 7, sweeps 0 and 7, cycles 0–2 and 21–23.

in Section 4.5, and dini = Ni−1 always for FC junctions. This means that at most

one right neuron is processed in a cycle, so clashes will never occur when accessing

the right memory bank. As an example, in Fig. 4.4, one right neuron finishes

processing every 3rd cycle.

73

Note that compared to Fig. 4.3, the weight memories in Fig. 4.4 are deeper

since Ci has increased from 6 to 24. However, the left layer memories remain

the same size since Ni−1 = 12 and zi = 4 are unchanged, but the left memory

bank is accessed more times since the number of sweeps has increased from 2

to 8. Also note that even if cycle 0 (blue) accesses some other clash-free subset

of left neurons, such as {4, 5, 6, 7} instead of {0, 1, 2, 3}, the connection pattern

would remain unchanged. This implies that different memory access patterns do

not necessarily lead to different connection patterns. This point will be discussed

further in Chapter 5.

4.7 FPGA Implementation

This section describes our implementation of the architecture described thus far.

Certain efforts in this implementation were achieved by Diandian Chen, – such

as Universal asynchronous receiver-transmitter (UART) interfacing and observing

outputs via Light Emitting Diode (LED)s – and hence have not been presented in

detail in this dissertation proposal.

We developed our implementation on a Digilent Nexys-4 DDR board containing

a FPGA from the Xilinx Artix-7 family with part number XC7A100T-1CSG324C

[79]. This is a fairly modest FPGA in terms of capacity and performance, cf. the

Xilinx Virtex UltraScale+ series [80] or the cloud-based FPGAs from Amazon Web

Services [81] for more powerful alternatives. However, our purpose was to obtain

74

an initial proof-of-concept in which we could explore efficient design styles and

optimize the Verilog Register Transfer Level (RTL) code to make it more robust

and scalable. The Artix-7 device serves this purpose. We are currently in the

process of extending our initial implementation to more powerful platforms.

Our initial proof-of-concept implementation used the MNIST dataset. We used

powers of 2 for most network configuration values to simplify the hardware realiza-

tion. Accordingly we padded each input with 0s to extend the number of features

from 784 to 1024 (this does not alter performance, as mentioned in Section 3.3.1),

and each ground-truth output with 0s to extend the number of labels from 10 to

32. Note that the output encoding remains one-hot.

4.7.1 Network Configuration and Training Setup

We implemented a structured pre-defined sparse NN with Nnet = (1024, 64, 32)

and dout
net = (4, 16), leading to ρnet = 7.576%. The complete configuration is given

in Table 4.2. The values shown were chosen on the basis of hardware constraints

and experimental results, which will be described in Sections 4.7.2 and 4.7.3.

We selected 12,544 inputs to comprise 1 epoch of training. Learning rate (η) is

initially 2−3, decay is implemented by halving after the first 2 epochs, then after

every 4 epochs until its value became 2−7. Designing η to always be a power of 2

leads to the multiplications with η in eq. (3.8) getting reduced to bit shifts. Pre-

defined sparsity leads to a total number of trainable parameters = (|W1| = 4096)+

75

Table 4.2: Implemented Network Configuration

Junction Number (i) 1 2

Left Neurons (Ni−1) 1024 64

Right Neurons (Ni) 64 32

Out-degree (douti) 4 16

Number of Weights (|Wi| = Ni−1 × douti) 4096 1024

In-degree (dini = Wi/Ni) 64 32

zi 128 32

Junction cycle (|Wi| /zi) a 32 32

Density (ρi = Wi/(Ni−1Ni)) 6.25% 50%

Overall Density ρnet = 7.576%

aIn terms of number of clock cycles. Not considering the additional clock cycles needed for
memory accesses.

(|W2| = 1024) + (|b1| = N1 = 64) + (|b|2 = N2 = 32) = 5216, which is much less

than 12,544, so we theorized that overfitting was not an issue. We verified this

using software simulations, and hence did not apply any regularization.

4.7.2 Bit Width Considerations

Parameter Initialization

We initialized weights using the Glorot Normal technique (2.16), which translates

to a three standard deviation range of ±0.51 for junction 1 and ±0.61 for junction

2 in our NN configuration described in Table 4.2.

The biases in our architecture are stored along with the weights as an augmen-

tation to the weight memory banks. So we initialized biases in the same manner

76

Figure 4.5: Maximum absolute values (left y-axis) for all weights, biases, and deltas in
the NN, and percentage classification accuracy (right y-axis), as the NN is trained.

as weights. Software simulations showed that this led to no degradation in per-

formance from the conventional method of initializing biases with constant values

such as 0 or 0.1. This makes sense since the maximum absolute value from ini-

tialization is much closer to 0 than their final values when training converges, as

shown in Fig. 4.5.

To simplify the RTL, we used the same set of |Wi| /zi unique values to initialize

all weights and biases in junction i. Again, software simulations showed that

this led to no degradation in performance as compared to initializing all of them

randomly. This is not surprising since an appropriately high value of initial learning

rate will drive each weight and bias towards its own optimum value, regardless of

similar values at the start.

77

Fixed Point Configuration

We recreated the aforementioned initial conditions in software and trained our

configuration to study the range of values for network variables until convergence.

The results for are shown in Fig. 4.5 for all weights, biases and delta values. We

used the sigmoid activation function for our hardware implementation, which has

output range = [0, 1].

To keep the hardware optimal, we decided on the same fixed point bit con-

figuration for all computed values of network parameters — {ai,h′i, δi,Wi, bi},

i ∈ {1, 2}. This uses less hardware resources compared to implementations such as

a) [50], which uses fixed point adders, but more resource-intensive floating point

multipliers and floating-to-fixed-point converters, or b) [49], which incurs addi-

tional Digital Signal Processing (DSP) resources due to its use of probabilistic

fixed point rounding techniques.

Our configuration is characterized by the bit triplet (bw, bn, bf), which are

respectively the total number of bits, integer bits, and fractional bits, with the

constraint bw = bn + bf + 1, where the 1 is for the sign bit. This gives a numerical

range of [−2bn , 2bn − 2−bf] and precision of 2−bf . Fig. 4.5 shows that the maxi-

mum absolute values of various network parameters during training stays within

8. Accordingly we set bn = 3. We then experimented with different values for the

bit triplet and obtained different utilizations for the FPGA Look Up Table (LUT)

78

Table 4.3: Effect of Bit Width on Performance

bw bn bf FPGA LUT Accuracy after Accuracy after

Utilization % 1 epoch 15 epochs

8 2 5 37.89 78 81

10 2 7 72.82 90.1 94.9

10 3 6 63.79 88 93.8

12 3 8 83.38 90.3 96.5

16 4 11 112 91.9 96.5

(i.e. logic) resources. The results are shown in Table 4.3. For this hardware imple-

mentation, we measured accuracy as classification performance on the last 1000

training samples3. Noting the diminishing returns and impractical utilization of

hardware resources for high bit widths, we chose the bit triplet (12, 3, 8) as being

the optimal case, i.e. this is a 12-bit implementation.

Dynamic Range Reduction due to Sparsity

We found that sparsity leads to reduction in the dynamic range of network param-

eters, since the summations in (3.6) and (3.7) are over smaller ranges. This moti-

vated us to use a special form of adder and multiplier which preserves the bit

triplet between inputs and outputs by clipping large absolute values of output to

either the positive or negative maximum allowed by the range. For example, 10

would become 7.996 and −10 would become −8.

3This differs from the conventional method of measuring performance as classification accuracy
on the test set. We chose the last 1000 training samples to measure performance on in order to
simplify the measurement techniques for this initial proof-of-concept implementation.

79

Figure 4.6: Histograms of absolute value of s1 with respect to dynamic range for (a)
sparse vs. (b) fully connected cases, as obtained from software simulations. Values right
of the pink line are clipped.

Fig. 4.6 analyzes the worst clipping errors by comparing the absolute values of

the argument of the sigmoid function in the hidden layer, i.e. s1 =
∑
W1a0 + b1

from (3.6a), for our sparse case vs. the corresponding FC case (which would have

dout1 = 64, dout2 = 32). Notice that the sparse case only has 17% of its values

clipped due to being outside the dynamic range afforded by bn = 3, while the FC

case has 57%. The sparse case also has a smaller variance. This implies that the

80

Figure 4.7: Comparison of activation functions for a1, as obtained from software simu-
lations.

hardware errors introduced due to finite bit-width effects are less pronounced for

our pre-defined sparse configuration as compared to FC.

Why we chose sigmoid activations?

As has been amply demonstrated in literature (e.g. [1, 9, 82]), the ideal ReLU

activation function ((2.8)) is more widely used than sigmoid ((2.9)) due to the

former’s better performance. This is primarily due to elimination of the vanishing

gradient problem. Note also that ReLU has a tendency towards generating sparse

outputs, i.e. several nodes output zero values for activation.

However, ideal ReLU is not practical for hardware due to its unbounded range.

We experimented with a modified form of ReLU where the outputs were clipped to

a) 8, which is the maximum supported by bn = 3, and b) 1, to preserve bit width

81

consistency in the multipliers and adders and ensure compatibility with sigmoid

activations. Fig. 4.7 shows software simulations comparing sigmoid with these

cases. Note that ReLU clipped at 8 converges similar to sigmoid, but sigmoid has

better initial performance. Also, there is no need to promote extra sparsity by

using ReLU because our configuration is already sparse. Finally, in our hardware

implementation, sigmoid does not suffer from vanishing gradient problems due to

just having two junctions. We therefore concluded that sigmoid activation is the

best choice for all layers. For the output layer, we simply picked the correct class

as corresponding to the output node with the maximum sigmoid output value.

4.7.3 Implementation Details

Sigmoid Activation

The sigmoid function uses exponentials, which are computationally infeasible to

obtain in hardware. So we pre-computed the values of σ(·) and σ
′
(·) and stored

them in LUTs. Interpolation was not used, instead we computed sigmoid for all

4096 possible 12-bit arguments up to the full 8 fractional bits of accuracy. On the

other hand, its derivative values were computed to 6 fractional bits of accuracy

since they have a range of [0, 2−2]. The number of sigmoid LUTs required is∑L
i=1 zi/d

in
i = 3.

82

Arithmetic Units

As indicated in Table 4.2, we designed zi/d
in
i to be an integer for both junctions,

which ensures that in every cycle, an integral number of right neurons finish their

FF processing. This implies that the FF summations in (3.6a) can occur in a

single cycle, and eliminates the need for storing partial sums. The total number

of multipliers required for FF is
∑L

i=1 zi = 160. The summations also use a tree

adder of depth = log2

(
dini
)

for every neuron processed in a cycle.

The BP summation in (3.7b) will need several cycles to complete for a single left

neuron since weight numbering is permuted on the left. This necessitates storing∑L
i=2 zi partial sums, however, tree adders are no longer required. Note that (3.7b)

has 2 multiplications, and moreover, BP does not occur in the first junction, so

the total number of multipliers required for BP is 2
∑L

i=2 zi = 64.

The UP operation in each junction i requires zi adders for the weights and zi/d
in
i

adders for the biases, since that many right neurons are processed every cycle. Only

the weight update requires multipliers, so their total number is
∑L

i=1 zi = 160.

Our FPGA device has 240 DSP blocks. Accordingly, we implemented the 224

FF and BP multipliers using 1 DSP for each, while the other 160 UP multipliers

and all adders were implemented using logic.

83

Memories and Data

All memories were implemented using Block Random Access Memory (BRAM).

The memories for a and h′ never need to be read from and written into in the same

cycle, so they are single-port. The δ memories are true dual-port, i.e. both ports

support reads and writes. This is required due to their read-modify-write nature,

since they accumulate partial sums. The ‘weight+bias’ memories are simple dual-

port, with one port used exclusively for reading the kth cell in cycle k, and the

other for simultaneously writing the (k − 1)th cell. These were initialized using

Glorot normal values while all other memories were initialized with zeroes.

Note that regardless of access order, the logic to compute memory addresses

simply consists of zi incrementers. This is because natural order accesses occur

sequentially, while interleaved order accesses also occur sequentially according to

the seed vector. A more complete description of clash freedom is deferred to

Chapter 5.

The ground truth one-hot encoding for all 12,544 inputs were stored in a single-

port BRAM, and initialized with word size = 10 to represent the 10 MNIST

outputs. After reading, the word was padded with 0s to make it 32-bit long. On the

other hand, the input data was too big to store on-chip. Since the native MNIST

images are 28×28 = 784 pixels, the total input data size is 12544×784×8 = 78.68

Mb, while the total device BRAM capacity is only 4.86 Mb. So the input data was

fed from a host computer using the UART interface.

84

Figure 4.8: Performance for different ρ2, keeping ρ1 fixed at 6.25%, as obtained from
software simulations.

Network Configuration

Here we explain the choice of NN configuration in Table 4.2. We initially picked

N2 = 16, which is the minimum power of 2 above 10. Since later junctions need

to be denser than earlier ones to improve performance, we experimented with

junction 2 density and show its effects on performance in Fig. 4.8. We concluded

that 50% density is optimum for junction 2. Attempting to meet the architectural

constraints in Section 4.5 led to z1 = 256, which was beyond the capacity of our

FPGA. So we increased N2 to 32 and set z2 to the minimum value of 32, leading

to z1 = 128. We also experimented with dout1 = 8, but the resulting accuracy was

within 1 percentage point of our final choice of dout1 = 4.

85

Figure 4.9: Breaking up each operation into 3 clock cycles.

Timing and Results

A junction cycle in our design is actually (|Wi| /zi + 2) = 34 clock cycles since each

set of zi weights in a junction need a total of 3 clock cycles for each operation,

as explained in Fig. 4.9. To summarize, the first and third are used to compute

memory addresses, while the second is the most time-consuming since it performs

most of the arithmetic computations. This determines our clock frequency, which

is 15MHz.

We stored the results of several training inputs and fed them out to 10 LEDs

on the board, each representing an output from 0-9. The FPGA implementation

86

Figure 4.10: Our design working on the Xilinx XC7A100T-1CSG324C FPGA.

performed according to RTL simulations and close to the ideal floating point soft-

ware simulations, giving 96.5% accuracy in 14 epochs of training. Fig. 4.10 shows

our FPGA implementation in action.

4.8 Summary

This chapter described our proposed hardware architecture and detailed an ini-

tial FPGA implementation we developed. While this is a good initial proof-of-

concept, there are significant engineering tasks required to demonstrate state-of-

the-art training speeds. This is an area of ongoing work.

87

Chapter 5

Connection Patterns

A fully connected neural network consists of fully connected junctions, i.e. every

node in a layer connects to every node in its previous and next layer. This gives

rise to a single possible connection pattern. On the other hand, a structured

pre-defined sparse NN with a fixed Nnet and dout
net has several different ways of

connecting the nodes in each junction. Fig. 5.1 illustrates this for a single junction

with 4 left nodes and 2 right nodes. Subfigure (a) shows the FC case, while

subfigures (b)–(g) show the six possible ways to arrange the connections for the

50% density case.

In practice, we desire connection patterns which give good performance and

are hardware friendly, i.e. lead to clash-free memory accesses and are simple to

implement. The remainder of this chapter will elaborate on these ideas.

5.1 Biadjacency Matrices

First we will introduce a useful concept. The biadjacency matrix for a bipartite

graph is a rectangular matrix with 1 and 0 denoting the presence and absence of

an edge, respectively [83]. Accordingly:

88

Figure 5.1: Different connection patterns for a single-junction network with Nnet =
(4, 2). (a) The FC case, with just one possible connection pattern. (b)–(g) Six different
ways of arranging connections when doutnet = (1), i.e. dinnet = (2). Notice that in each case,
each left node has exactly one outgoing connection and each right node has exactly two
incoming connections.

ä Definition 6: Biadjacency matrix : The biadjacency matrix Bi
Ni×Ni−1

for

junction i is defined such that B(j,k)
i = 1 if an edge exists between node k in layer

i− 1 and node j in layer i, otherwise B(j,k)
i = 0.

Then, if junction i is structured pre-defined sparse, Bi has exactly dini 1s in

each row and exactly douti 1s in each column, i.e. :

1TBi = douti 1T (5.1a)

Bi1 = dini 1 (5.1b)

89

where 1 is the vector of all 1s with size set by the context. Moreover, the density

can be computed as the fraction of 1s in the biadjacency matrix:

ρi =

∑Ni

j=1

∑Ni−1

k=1 B(j,k)
i

NiNi−1
(5.2)

Now we attempt to tackle the question of the number of possible connection

patterns in a junction i, which we denote as Gcp
i . We saw that the single junction

in Fig. 5.1 with the structured constraints douti = 1 and dini = 2 had Gcp
i = 6.

These are the six possible (2× 4) {0, 1}-only matrices with each row summing to

2 and each column summing to 1, as given below:

1 1 0 0

0 0 1 1

 ,
1 0 1 0

0 1 0 1

 ,
1 0 0 1

0 1 1 0

 ,
0 1 1 0

1 0 0 1

 ,
0 1 0 1

1 0 1 0

 ,
0 0 1 1

1 1 0 0

Generalizing this, we can state:

Theorem 2

Given a junction i with Ni−1, Ni and ρi (from which douti and dini can be

computed), the number of possible connection patterns it can have, Gcp
i ,

is the same as the number of possible matrices of dimensions Ni × Ni−1

90

consisting only of {0, 1} entries such that sum of each row equals dini and

sum of each column equals douti .

Moreover, the number of possible connection patterns in a complete L-junction

NN is

Gcp
net =

L∏
i=1

Gcp
i (5.3)

Finding the exact value of Gcp
i for any junction may not be feasible, cf. [84].

However, computing the exact value is usually of little interest. As will be dis-

cussed subsequently, finding a class of connection patterns with certain desirable

properties is of more importance.

5.2 Clash-free memory access patterns

Section 4.3 introduced the idea of a clash as attempting to perform a particular

operation more than once on the same memory at the same time, which would

stall processing. For convenience in the upcoming discussion, Fig. 4.3 is repeated

as Fig. 5.2.

Our edge-based architecture described in Chapter 4 is inspired by architec-

tures proposed for iterative decoding of modern sparse-graph-based error correc-

tion codes (i.e. Turbo and Low Density Parity Check (LDPC) codes) (cf., [85,86]).

91

For modern codes, the clash-free property of the memories is ensured by defining

clash-free interleavers (i.e. permutations) [87], or clash-free parity check matri-

ces [86]. Similarly in our architecture, the connection pattern in a junction is

defined by an interleaver, i.e. a mapping from sequentially numbered edges on the

right to permuted numbering on the left. This leads to interleaved order access

of the left memory banks, and the possibility of clashes. We defined a simple

algorithm to prevent this from happening – start with a seed vector φi specifying

the left memory addresses to be accessed in cycle 0, then perform (φi + 1) %Di

for every subsequent cycle. This defines a certain left memory access pattern

for junction i, and can be visualized using the shaded left memories in Fig. 5.2.

Similar to connection patterns, we define Gmap
i and Gmap

net for the number of pos-

sible left memory access patterns in junction i and a complete NN, respectively

(i.e. Gmap
net =

∏L
i=1G

map
i).

When zi ≥ dini , which is expected to be true for practical cases of implementing

sparse NNs on powerful hardware devices, we state a result without formal proof:

Gcp
i is lower bounded by Gmap

i . Thus, for a given NN withNnet and dout
net and a given

hardware device with znet, G
map
net is a measure of the number of possible pre-

defined sparse connection patterns which are clash-free and hardware

friendly.

For the case of zi < dini however, it could happen that Gcp
i < Gmap

i . In par-

ticular, a FC junction has only one possible connection pattern, as shown in Fig.

92

Figure 5.2: Repeating Fig. 4.3 for convenience.

5.1(a), but there can be many possible left memory access patterns. As an exam-

ple, consider the left memory access pattern for the FC junction in Fig. 4.4. Cycle

0 accesses left nodes {0, 1, 2, 3}, while cycle 1 accesses left nodes {4, 5, 6, 7}. These

can be switched to get a different clash-free left memory access pattern, but the

connection pattern would not change.

5.2.1 Types of memory access patterns

We refer to the seed vector technique discussed previously as Type 1 memory

accesses. This is recapitulated in Fig. 5.3(a). This approach only requires storing

93

the zi-dimensional seed vector φi, and uses zi incrementers to generate subsequent

addresses. We can compute Gmap
i as the number of possible ways of designing

φi, i.e. Gmap
i = Di

zi . This is the simplest and most hardware friendly method

for memory accesses we could come up with. However, if desired, there can be

other types of memory accessing which increase Gmap
i (and therefore Gmap

net and the

number of possible connection patterns) at the cost of more hardware. These are

discussed next.

In Type 2, a new seed vector φi is defined for every sweep. Considering the

example in Fig. 5.3(b), φi = (1, 0, 2, 2) for sweep 0, but (2, 0, 0, 0) for sweep

1. Since there are douti sweeps, there will be douti different φi vectors for each

junction. This results in Gmap
i = Di

zid
out
i . This approach requires storing douti

different φis, and uses zi incrementers to generate subsequent addresses. Our

hardware implementation (described in Section 4.7) used type 2 memory accesses.

The seed vectors for all sweeps were pre-generated and hard-coded into FPGA

logic.

In Type 3, the constraint of cyclically accessing the left memories is also

eliminated. Instead, any cycle can access any cell from each of the memories. This

means that storing φi is not enough, the entire sequence of memory accesses needs

to be stored as a matrix Φi ∈ {0, 1, · · · , Di − 1}Di×zi . In Fig. 5.3(c) for example,

Φi = ((1, 0, 2, 2), (0, 2, 1, 0), (2, 1, 0, 1)) for sweep 0. Every sweep would also have a

different Φi, resulting in Gmap
i = (Di!)

zid
out
i . Thus, this approach requires storing

94

Figure 5.3: (a-c) Various types of clash-free left memory access patterns, and (d) mem-
ory dithering for Type 3, using the same left neuronal structure from Fig. 5.2 as an
example. The grids represent different access patterns for the same memory bank. The
number in each cell represents the left neuron number whose parameter is stored in that
cell. Cells sharing the same color are read in the same cycle.

douti different Φis, but removes the need for having zi incrementers to compute

subsequent addresses.

The most general kind of clash-freedom resulting in the biggest Gmap
i arises

from ignoring the effect of sweeps. We call this Type 4. This means that each

address in each left memory of junction i can be accessed in any cycle, as long as it

is accessed a total of douti times during the junction cycle (consisting of C = Did
out
i

cycles). However, this may lead to connectivity patterns where a pair of neurons

in adjacent layers have more than one connection between them, which is invalid

due to redundancy. Hence we skip the details, but state the resulting count of

possible NNs: Gmap
i =

(
C!

(douti !)
Di

)zi
.

A technique that can be applied to all the types of clash-freedom is mem-

ory dithering, which is a permutation of the zi memories (i.e. the columns) in a

95

bank. This permutation can change every sweep, as shown in Fig. 5.3(d). Memory

dithering incurs no additional incrementers, but incurs an additional storage cost

because of the zi permutation, which goes up to possibly douti different zi permu-

tations for Types 2 and 3. However, Gmap
i is increased by a factor Ki, as described

next.

• If dini /zi is an integer, an integral number of cycles are required to process

each right neuron. Since a cycle accesses all memories, dithering has no effect

and Ki = 1.

• If zi/d
in
i is an integer greater than 1, the effects of dithering on connectivity

patterns are only observed when switching from one right neuron to the next

within a cycle. This results in

Ki =

 zi!

dini !
zi
din
i

douti

(5.4)

for Types 2 and 3, and the douti exponent is omitted for Type 1 since the

access pattern does not change across sweeps.

• When either of zi or dini does not perfectly divide the other, an exact value

of Ki is hard to arrive at since some proper or improper fraction of right

neurons are processed every cycle. In such cases, Ki is upper-bounded by

(z!)d
out
i .

96

Table 5.1: Comparison of Clash-free Left Memory Access Types and associated
Hardware Cost for a Single Junction i with (Ni−1, Ni, d

out
i , dini , zi) = (12, 12, 2, 2, 4)

Type
Memory

Ki Gmap
i

Cost to Compute Memory Addresses

Dithering Storage Incrementers

1
No N/A Di

zi = 81 zi = 4 zi = 4

Yes 6 KiDi
zi = 486 2zi = 8 zi = 4

2
No N/A Di

zid
out
i = 6561 zid

out
i = 8 zi = 4

Yes 36 KiDi
zid

out
i ≈ 236k 2zid

out
i = 16 zi = 4

3
No N/A (Di!)

zid
out
i ≈ 1.68M Ni−1d

out
i = 24 None

Yes 36 (Di!)
zid

out
i ≈ 60M (Ni−1 + zi) d

out
i = 32 None

Table 5.1 compares the count of possible left memory access patterns and asso-

ciated hardware cost for computing memory addresses for Types 1–3, with and

without memory dither. The junction used is the same as in Fig. 5.2, except Ni

is raised to 12 such that dini becomes 2 and allows us to better show the effects of

memory dithering. Ki is calculated as given in (5.4).

5.3 Comparison between classes of Pre-defined

Sparsity

At this point, the reader might be wondering about the performance of such clash-

free patterns. To study this, we group pre-defined sparsity into three classes in

order of least to most restrictive, or equivalently, from most to least number of

possible connection patterns, or equivalently, from ‘difficult to realize’ to ‘simple

to realize’ on our hardware architecture.

97

• Random, wherein connections are randomly distributed without regard for

fixed in- and out-degrees. Given Ni and Ni−1, a member of this class is

completely defined by ρi.

• Structured, which imposes the constraints of fixed in- and out-degrees. Given

Ni and Ni−1, a member of this class is completely defined by douti .

• Clash-free, which further imposes the constraint of clash-free memory access

patterns. Based on hardware friendliness, we can further expand clash-free

into subclasses – from type 3 with memory dithering to type 1 with no

memory dithering (i.e. the opposite order of Table 5.1). Given Ni and Ni−1,

a member of this class is completely defined by douti and zi.

Table 5.2 compares performance on different datasets for these three classes.

For the clash-free class, we chose the most restrictive Type 1 with no memory

dithering, and experimented with different znet settings to simulate different hard-

ware environments:

• Reuters: One junction cycle is 50 cycles for all the different densities. This is

because we scale znet accordingly, corresponding to a more powerful hardware

device being used for each NN as ρnet increases.

• CIFAR-100 and MNIST: These simulate cases where hardware choice is lim-

ited, such as a high-end, a mid-range and a low-end device being available.

Thus three different znet values are used for CIFAR depending on ρnet.

98

• TIMIT: We keep znet constant for different densities. Junction cycle length

varies from 90 cycles for ρnet = 7.69% to 810 for ρnet = 69.23%. This shows

that when limited to a single low-end hardware device, denser NNs can be

processed in longer time by simply changing znet.

Table 5.2 confirms that the most restrictive and hardware friendly clash-

free pre-defined sparse connection patterns do not lead to any statisti-

cally significant performance degradation. Thus, for most practical purposes,

one can opt for maximum hardware simplicity and design for Type 1 clash-freedom

with no memory dithering. For certain pathological cases of particularly small

junctions, one may opt for the other Types and incorporate memory dithering to

incorporate more flexibility in getting a particularly desired connection pattern.

Finally, we would like to mention that while clash-free connection patterns are

focused on ease of hardware implementation, they can also be good for software

implementation – e.g. the clash-free class could serve as the basis for pattern selec-

tion in software packages.

We also observed that random pre-defined sparsity performs poorly for very

low density networks, as shown by the blue values. This is possibly because there

is non-negligible probability of neurons getting completely disconnected, leading

to irrecoverable loss of information.

99

Table 5.2: Comparison of Pre-Defined Sparse Classes

dout
net ρnet(%) znet

Test Accuracy Performance (%)
Clash-free Structured Random

MNIST: Nnet = (800, 100, 100, 100, 10), FC test accuracy = (98± 0.1)%

(80, 80, 80, 10) 80.2 (200, 25, 25, 4) 97.9± 0.2 97.9± 0.2 97.8± 0.2
(60, 60, 60, 10) 60.4 (200, 25, 25, 4) 97.6± 0.1 97.8± 0.1 97.6± 0.2
(40, 40, 40, 10) 40.6 (200, 25, 25, 5) 97.5± 0.1 97.7 97.6± 0.1
(20, 20, 20, 10) 20.8 (200, 25, 25, 10) 97.2± 0.2 97.2± 0.1 97.1± 0.1
(10, 10, 10, 10) 10.9 (200, 25, 25, 25) 96.7± 0.1 96.8± 0.2 96.7± 0.2
(5, 10, 10, 10) 6.9 (100, 25, 25, 25) 96.3± 0.1 96.3± 0.1 96.2± 0.1
(2, 5, 5, 10) 3.6 (80, 25, 25, 50) 95± 0.2 95.1± 0.1 95± 0.3
(1, 2, 2, 10) 2.2 (80, 20, 20, 100) 93.3± 0.3 93.1± 0.5 92± 0.3

Reuters: Nnet = (2000, 50, 50), FC test accuracy = (89.6± 0.1)%

(25, 25) 50 (1000, 25) 89.4± 0.1 89.3 89.4
(10, 10) 20 (400, 10) 87± 0.1 86.7± 0.1 86.5± 0.1
(5, 5) 10 (200, 5) 78.5± 0.5 78.2± 0.7 77.5± 0.6
(2, 2) 4 (80, 2) 53.3± 1.8 51.2± 1.7 46.8± 2.9
(1, 1) 2 (40, 1) 28.4± 2.4 28.7± 2.3 28± 1.9

TIMIT: Nnet = (39, 390, 39), FC test accuracy = (43.2± 0.2)%

(270, 27) 69.2

(13, 13)

43± 0.1 43 43± 0.1
(180, 18) 46.2 42.7± 0.1 42.8± 0.1 42.9± 0.1
(90, 9) 23.1 42.1± 0.1 42.5± 0.1 42.4± 0.1
(60, 6) 15.4 41.5± 0.1 41.8± 0.2 41.9± 0.1
(30, 3) 7.7 40.5± 0.2 40.1± 0.2 39.4± 0.8

CIFAR-100 a: Nnet = (4000, 500, 100), FC top-5 test accuracy = (87.1± 0.6)%

(100, 100) 22
(2000, 250)

87.5± 0.2 87.7± 0.2 87.4± 0.3
(29, 29) 6.4 86.8± 0.3 87.2± 0.5 87.1± 0.2
(12, 12) 2.6

(400, 50)
86.3± 0.2 86.5± 0.4 86.6± 0.4

(5, 5) 1.1 85.3± 0.5 85.5± 0.5 85.7± 0.3
(2, 2) 0.4

(80, 10)
84.1± 0.5 84.3± 0.3 83.8± 0.3

(1, 1) 0.2 83± 0.5 83.3± 0.4 81.7± 0.7

aFor CIFAR-100, given values of Nnet, d
out
net , znet and ρnet are just for the MLP portion, which

follows convolution and pooling layers to form the complete NN, as described in Section 3.3.1.
Reported values are top-5 test accuracies obtained from training on the complete NN.

100

5.4 Comparison to other methods of sparsity

As we have seen, pre-defined sparsity is a method of complexity reduction ‘from the

get-go’, i.e. prior to training. It can be thought of as a preemptive method since

it is foresees that most NNs are over-parametrized, hence, most of the weights can

be absent from the start without appreciable performance loss. In this sense, pre-

defined sparsity should not be compared on an apples-to-apples basis

with methods which train the complete FC NN and then reduce com-

plexity based on training results. Nevertheless, for the purposes of thorough-

ness, our previous work [23] compared our method of pre-defined sparsity with the

most restrictive Type 1 clash freedom against two other methods of sparsifying

NNs.

This comparison and the consequent results were achieved by Kuan-Wen

Huang, hence are not presented in this dissertation proposal. We state the primary

conclusion – even though clash-free patterns are highly structured and pre-defined,

there is no significant performance degradation when compared to advanced meth-

ods for producing sparse models which exploit specific properties of the dataset or

learn sparse patterns during training. In fact, the performance of our method is

comparable to FC NNs at most values of ρnet. The reader is encouraged to refer

to Section V of [23] for details.

101

5.5 Metrics for Connection Patterns

This section discusses possible methods and metrics to judge the ‘goodness’ of

a connection pattern before training a NN and computing inference accuracies.

These methods can be helpful in filtering out bad connection patterns without

incurring the time and computational expense of training. We will use the concept

of biadjacency matrices introduced earlier in Section 5.1.

Biadjacency matrices for individual junctions can be multiplied to yield the

effective connection pattern for an equivalent junction spanning any two junc-

tions x and y, i.e. Bx:y
Ny×Nx−1

=
∏x

i=y Bi, where element B(j,k)
x:y denotes the number of

paths from the kth neuron in layer x− 1 to the jth neuron in layer y. Thus, these

elements are integers ≥ 0. For the special case where x = 1 and y = L, we obtain

the input-output biadjacency matrix B1:L, i.e. the equivalent junction is the whole

NN. Each element of B1:L is the number of paths from a certain input neuron to

a certain output neuron.

As an example, consider the NN with Nnet = (6, 4, 2) shown in Fig. 5.4(a).

The input-output biadjacency matrix is B1:2 = B2B1, the equivalent out-degree is

dout1:2 = dout1 dout2 = 2, and equivalent in-degree is din1:2 = din1 d
in
2 = 6. The equivalent

input-output junction 1 : 2 is shown in Fig. 5.4(b). Note how the equivalent

biadjacency matrix has double connections between some pairs of neurons. This

indicates that there are multiple paths connecting certain inputs to certain outputs.

102

Figure 5.4: (a) Biadjacency matrices for a NN with Nnet = (6, 4, 2), doutnet = (2, 1),
dinnet = (3, 2). (b) Equivalent input-output junction and its biadjacency matrix. Double
lines indicate double connections between the same pair of neurons.

Note that an equivalent junction is only an abstract concept that aids visu-

alizing how neurons connect across junctions. The reader should not mistake it

for an actual junction; such an understanding would be incorrect because it would

ignore the effects of the non-linearity in the hidden layer. However, constructing

equivalent junctions is helpful in formalizing some metrics for connection patterns,

as will be discussed in the remainder of this section.

5.5.1 Window biadjacency matrices

We now attempt to characterize the quality of a pre-defined sparse connection

pattern, i.e. we try to find the best possible way to connect neurons to optimize

103

Figure 5.5: (a–b) Images can be divided into 2D windows corresponding to width and
height at the output of the input layer of a NN. For example, a 28 × 28 MNIST image
can be divided into (a) 16 windows of size 7 × 7 each, or (b) 4 windows of size 14 × 14
each. (c) Example of a 3D window where there is a 3rd dimension for depth, such as
color images like CIFAR, or the output of a convolutional layer.

performance. As indicated in Chapter 3, one reason behind the success of pre-

defined sparsity is that there exists redundancy / correlated information in typical

NN problems. Intuitively, we assume that left neurons of a junction can be grouped

into windows depending on the dimensionality of the left layer output. For

example, the input layer for a NN training on MNIST would have 2D windows,

each of which might correspond to a fraction of the image, as shown in Fig. 5.5(a–

b). When outputs from a NN have an additional depth dimension, such as color

channels in CIFAR, each window is a cuboid capturing fractions of width, height

and depth, as shown in Fig. 5.5(c).

The idea behind constructing windows is that neurons in a layer should get

information from all portions of the entity its adjacent layer is attempting to rep-

resent. Thus, we will try to maximize the number of left windows to which each

104

right neuron connects. To realize the importance of this, consider the MNIST

output neuron representing digit 2. Let’s say the sparse connection pattern is

such that when the connections to output 3 are traced back to the input layer,

they all come from the top half of the image. This would be undesirable since

the top half of an image of a 2 can be mistaken for a 3, as in Fig. 5.5(a–b).

A good pre-defined sparse connection pattern will try to avoid such scenarios by

spreading the connections to any right neuron across as many input windows as

possible. The problem can also be mirrored so that every left neuron connects to

as many different right windows as possible. This ensures that local information

from left neurons is spread to different parts of the right layer. The grouping of

right windows will depend on the dimensionality of the input to the right layer.

The window size is chosen to be the minimum possible such that the ideal num-

ber of connections from or to it remains integral. In order to achieve the minimum

window size, we let the number of left windows be dini and the number of right win-

dows be douti . So the number of neurons in each left and right window is Ni−1/d
in
i

and Ni/d
out
i , respectively. The example from Fig. 5.4 is reproduced in Fig. 5.6.

For example, since din1 = 3, the inputs must be grouped into 3 windows of size 2 so

that ideally one connection from each reaches every hidden neuron. The 1st and

3rd hidden neurons achieve this and are colored green, while the other two do not

and are colored red.

105

Figure 5.6: Window biadjacency matrices and scatter (to be discussed in Section 5.5.2)
for the NN in Fig. 5.4. Green neurons indicate ideal connectivity. The hidden layer is
split into two parts to show separate constructions of Bf

1 and Bb
2 . (a) shows the complete

NN, while (b) shows the equivalent input-output junction 1 : 2. The final scatter value
S is bolded within the scatter vector Snet.

Then we construct the forward window biadjacency matrix Bf
i

Ni×dini

and backward

window biadjacency matrix Bb
i

douti ×Ni−1
by summing up entries of Bi as shown in Fig.

5.7. These window biadjacency matrices describe connectivity between windows

in a layer and neurons on the opposite side of the junction. Forward indicates

windows on the left to neurons on the right, and vice-versa for backward. Ideally,

every window biadjacency matrix for a single junction should be the all 1s matrix,

which signifies exactly 1 connection from every window to every neuron on the

opposite side.

106

Figure 5.7: Constructing window biadjacency matrices for junction 1 of the NN in
Fig. 5.4(a). The forward window biadjacency matrix Bf

1 is constructed by summing
(Σ) across din1 = 3 windows of each row of B1, each window is of size N0/d

in
1 = 2. The

backward window biadjacency matrix Bb
1 is constructed by summing (Σ) down dout1 = 2

windows of each column of B1, each window is of size N1/d
out
1 = 2.

Note that these matrices can also be constructed for equivalent junctions,

i.e. Bf
x:y and Bb

x:y, by multiplying matrices for individual junctions. It could hap-

pen that the effective dinx:y for layer y becomes more than Nx−1, or the effective doutx:y

for layer x−1 becomes more than Ny. In such cases, the number of neurons in each

window is rounded up to 1. This scenario signifies that there are multiple paths

connecting neurons in the equivalent junction, i.e. Bf
x:y and/or Bb

x:y have entries

greater than 1. In such cases, a good connection pattern should try to distribute

the connections as evenly as possible. as quantified in Section 5.5.2.

5.5.2 Scatter

We propose scatter S as a proxy for the goodness of a pre-defined sparse MLP

connection pattern. In other words, it can be useful in predicting NN performance

107

before training. To compute scatter, we count the number of entries greater than or

equal to 1 in the window biadjacency matrix. If a particular window gets more than

its fair share of connections to a neuron on the opposite side, then it is depriving

some other window from getting its fair share. This should not be encouraged, so

we treat entries greater than 1 the same as 1. Scatter is the average of the count,

i.e. for junction i:

Sf
i =

1

Nidini

Ni∑
j=1

dini∑
k=1

I
(
Bf
i

(j,k) ≥ 1
)

(5.5a)

Sb
i =

1

douti Ni−1

douti∑
j=1

Ni−1∑
k=1

I
(
Bb
i

(j,k) ≥ 1
)

(5.5b)

The subscript and superscript notation for scatter is the same as the biadja-

cency matrices, i.e. f and b denote forward (left windows to right neurons) and

backward (right neurons to left windows), respectively. As an example, the NN

in Fig. 5.6(a) has Sf
1 = 10/12 = 0.83 since 10 out of the 12 elements in Bf

1 are

≥ 1. The other scatter values can be computed similarly to form the scatter vector

Snet =
(
Sf
1, S

b
1 , S

f
2, S

b
2 , S

f
1:2, S

b
1:2

)
. Notice that Snet will be all 1s for FC NNs, which

is the ideal case. Incorporating sparsity leads to reduced Snet values. Finally, we

define:

108

ä Definition 7: Scatter : Scatter is a measure of how well-distributed the

connections from neurons in any layer of a NN are to its adjacent layers. It is

measured as the minimum element in the scatter vector, i.e. :

S = minSnet (5.6)

In Fig. 5.6 for example, Snet = (0.83, 0.67, 0.5, 1, 0.67, 0.67), so S = 0.5 (shown

in bold). Our experiments indicate that any low value in Snet leads to bad perfor-

mance, so we picked the critical minimum value. These experiments are described

next.

Experimental Results on Scatter

We ran experiments to evaluate scatter using structured pre-defined sparse (non-

clash-free) NNs training on three datasets: a) Morse code symbol recognition,

b) MNIST, and c) CIFAR-10 images. (a) will be described in Chapter 6, while

(c) has the same image format as CIFAR-100, but 10 classes instead of 100 (see

Section 3.3.1 for more details on MNIST and CIFAR). The reader is encouraged

to refer to our previous work [24] for complete details on the network and training

configuration. We skip those details here and focus on the results instead. These

are shown in Fig. 5.8, which plots classification performance on validation data

vs. scatter S. Subfigures (a–b) show that performance gets better with increasing

scatter. Subfigure (c) does not show the trend clearly, we hypothesize that this is

109

Figure 5.8: Performance vs. scatter for structured pre-defined sparse (non-clash-free)
NNs training on (a) Morse (b) MNIST, and (c) CIFAR-10, part of which is convolutional.
All minimum values that need to be considered to differentiate between connection pat-
terns are bolded.

due to using convolution layers in the NN for CIFAR-10, leading to reduced impact

of the MLP portion.

Snet is shown alongside each point. When S is equal for different connection

patterns, the next minimum value in Snet needs to be considered to differentiate

the networks, and so on. Considering the Morse results, the leftmost three points

all have S = 1/8, but the number of occurrences of 1/8 in Snet is 3 for the lowest

point (8% accuracy), 2 for the second lowest (12% accuracy) and 1 for the highest

point (46% accuracy). For the MNIST results, both the leftmost points have a

single minimum value of 1/16 in Snet, but the lower has two occurrences of 1/4 while

the upper has one.

We draw several insights from these results. Firstly, although we defined S as

a single value for convenience, there may arise cases when other (non-minimum)

110

elements in Snet are important. Secondly, our results indicate that scatter is a

sufficient metric for performance, not necessary. In other words, a network with

a high S value should perform well, but a network with a slightly lower S value

than another cannot be conclusively dismissed as being worse. But if a network

has multiple low values in Snet, it should be rejected. Finally, carefully choosing

which neurons to group in a window will increase the predictive power of scatter.

A priori knowledge of the dataset will lead to better window choices.

The rightmost point in each subfigure of Fig. 5.8 corresponds to structured

pre-defined sparsity as we have described so far, i.e. the only constraints are fixed

in- and out-degree. To be more specific, the connections can arrange themselves

in any way they want as long as these constraints are obeyed. On the other hand,

all other points were generated by specifically planning individual connections,

i.e. designing the complete biadjacency matrices manually. These perform poorly

because when we designed a particular junction to have high values in Snet, it

invariably led to low values for another junction, leading to a low value for the

final S. This explains why the unplanned patterns perform the best.

In summary, we would like to state that our experiments on scatter are not

as exhaustive as those performed to discover trends and guidelines in pre-defined

sparsity, as detailed in Section 3.3. Hence, the results regarding scatter require

111

additional study before being definitive, as we plan to do in our expected contri-

butions. Also note that the trends discussed in Section 3.3 also help in indicating

how well a pre-defined sparse NN can be expected to perform.

112

Chapter 6

Dataset Engineering

Thus far, this document has discussed methods and architectures for complexity

reduction of neural networks primarily aimed towards classification problems. An

underlying assumption was that there is a large amount of high quality labeled

data available to train and benchmark the performance of different NNs. The

effects of dataset size on network performance has been explored in [88], in par-

ticular, more data is beneficial in reducing overfitting and improving robustness

and generalization capabilities of NNs [38, 89]. However, it is often a challenge to

obtain adequate amounts of quality labeled data, and several entities [90–92] have

identified this as a bottleneck to pushing the frontiers of NN performance.

A possible solution is to obtain data by synthetic instead of natural means.

Synthetic data is generated using computer algorithms instead of being col-

lected from real-world scenarios. The advantages are that a) computer algorithms

can be tuned to mimic real-world settings to desired levels of accuracy, and b) a

theoretically unlimited amount of data can be generated by running the algorithm

long enough. Synthetic data has been successfully used in problems such as 3D

113

imaging [93], point tracking [94], breaking Captchas on popular websites [95], and

augmenting real world datasets [96].

We conducted some investigations on synthetic data with the underlying motive

of creating several low-redundancy datasets, i.e. which would challenge a

pre-defined sparse NN more than datasets with considerable redundancy such as

discussed in Section 3.3.2. We came up with a family of synthetic datasets on

classifying Morse codewords. Morse code is a system of communication where

each letter, number or symbol in a language is represented using a sequence of dots

and dashes, separated by spaces. It is widely used to communicate in situations

where voice is not possible, such as helping people with disabilities talk [97–99], or

where message transmission needs to be achieved using only 2 states [100], or in

rehabilitation and education [101]. Morse code is a useful skill to learn and there

exist cellphone apps designed to train people in its usage [102,103].

Our classification problem groups Morse codewords into 64 character classes

comprising letters, numbers and symbols. This is different from previous works

with just two classes for dots and dashes [97, 98, 100], and other approaches using

fuzzy logic [100], time series to decode English words in Morse code [104, 105], or

radial basis functions [106]. We also investigated metrics to characterize the

difficulty of a dataset. In summary, we refer to our efforts discussed in this

chapter as dataset engineering. We published these efforts in [28], which won a

114

‘Conference Best Paper’ award. The codebase is available on Github [29]. The

key contributions are as follows:

Contributions in dataset engineering

1. To the best of our knowledge, we are the first to develop an algo-

rithm for generating machine learning datasets of varying difficulty –

measured as test set classification accuracy of a NN training on it.

Harder datasets lead to lower accuracy, and vice-versa. Encounter-

ing harder datasets leads to aggressive exploration of hyperparameters

and learning algorithms, which ultimately increases the robustness of

NNs training on them. Some particularly hard datasets are useful for

testing the limits of our sparse NNs.

2. We introduce metrics to quantify the difficulty of a dataset before hav-

ing a NN train on them. While some of these arise from information

theory, we also come up with a new metric which achieves a high cor-

relation coefficient with the eventual accuracy obtained after training

and inference.

3. This work is one of few to introduce a spatially 1-dimensional dataset.

This is in contrast to the wide array of image and character recognition

datasets which are usually 2D such as MNIST, where each image has

width and height, or 3D such as CIFAR, where each image has width,

115

height and depth (color channels). The dimensionality of the inputs is

important when benchmarking pre-defined sparse connection patterns,

since some of the metrics discussed in Chapter 5 depend on dimension.

6.1 Generating Algorithm

We picked 64 class labels for our dataset – the 26 English letters, the 10 Arabic

numerals, and 28 other symbols such as (, +, :, etc. Each of these is represented

by a sequence of dots and dashes in Morse code, for example, + is represented as

• — • — •. So as to mimic a real-world scenario in our algorithm, we imagined

a human or a Morse code machine writing out this sequence within a frame of

fixed size. Wherever the pen or electronic instrument touches is darkened and has

a high intensity, indicating the presence of dots and dashes, while the other parts

are left blank, i.e. spaces.

Step 1 – Frame Partitioning

For our algorithm, each Morse codeword lies in a frame which is a vector of 64

values, i.e. 64 features per input. Within the frame, the length of a sequence

having consecutive similar values is used to differentiate between a dot and a dash.

In the baseline dataset, a dot can be 1-3 values wide and a dash 4-9. This is

in accordance with international Morse code regulations [107] where the size or

116

duration of a dash is around three times that of a dot. The space between a dot

and a dash can have a length of 1-3 values. The exact length of a dot, dash or

space is chosen from these ranges according to a uniform probability distribution.

This is to mimic the human writer who is not expected to make each symbol have

a consistent length, but can be expected to make dots and spaces around the same

size, and dashes longer than them. The baseline dataset has no leading spaces

before the 1st dot or dash, i.e. the codeword starts from the left edge of the frame.

There are trailing spaces to fill up the right side of the frame after all the dots and

dashes are complete.

Step 2 – Assigning Values for Intensity Levels

All values in the frame are initially real numbers in the range [0, 16] and indicate

the intensity of that point in the frame. For dots and dashes, the values are drawn

from a normal distribution with mean µ = 12 and standard deviation σ = 4/3. The

idea is to have the ‘six-sigma’ range from (12− 3× 4/3) = 8 to (12 + 3× 4/3) = 16.

This ensures that any value making up a dot or a dash will lie in the upper half

of possible values, i.e. in the range [8, 16]. The value of a space is exactly 0. Once

again, these conditions mimic the human or machine writer who is not expected

to have consistent intensity for every dot and dash, but can be expected to not let

the writing instrument touch portions of the frame which are spaces.

117

Step 3 – Noising

Noise in input samples is often deliberately injected as a means of avoiding overfit-

ting in NNs [38], and has been shown to be superior to other methods of avoiding

overfitting [108]. This was, however, the secondary reason behind our experiment-

ing with noise. The primary reason was to deliberately make the data hard to

classify and test the limits of different NNs processing it. Noise can be thought of

as a human accidentally varying the intensity of writing the Morse codeword, or

a Morse communication channel having noise. The baseline dataset has no noise,

while others have additive noise from a mean-zero normal distribution applied to

them. Fig. 6.1 shows the 3 steps up to this point. Finally, all the values are

normalized to lie within the range [0, 1] with precision of 3 decimal places.

Step 4 – Mass Generation

Steps 1-3 describe the generation of one input sample corresponding to some par-

ticular class label. This can be repeated as many times as required for

each of the 64 class labels. This demonstrates a key advantage of synthetic

over real-world data – the ability to generate an arbitrary amount of data having

an arbitrary prior probability distribution over its classes. The baseline dataset

has 7000 examples for each class, for a total of 448,000 examples.

118

Figure 6.1: Generating the Morse codeword • — • — • corresponding to the + sym-
bol. The first 3 steps, prior to normalizing, are shown. Only integer values are shown
for convenience, however, the values can and generally will be fractional. Normal(µ, σ)
denotes a normal distribution with mean = µ, standard deviation = σ. For this figure,
σ = 1.

6.1.1 Variations and Difficulty Scaling

The baseline dataset is as described so far, except that σ = 0, i.e. it has no additive

noise. We experimented with the following variations in datasets:

1. Baseline with additive noise = Normal(0, σ), σ ∈ {0, 1, 2, 3, 4}. These are

called Morse 1.σ, i.e. 1.0 to 1.4, where 1.0 is the baseline.

119

2. Instead of having the codeword start from the left edge of the frame, we

introduced a random number of leading spaces. For example, in Fig. 6.1,

the codeword occupies a length of 26 values. The remaining 38 space values

can be randomly divided between leading and trailing spaces. This increases

the difficulty of the dataset since no particular set of neurons are expected

to be learning dots and dashes as the actual codeword could be anywhere

in the frame. Just like variation 1, we added noise and call these datasets

Morse 2.σ, σ ∈ {0, 1, 2, 3, 4}.

3. There is no overlap between the lengths of dots and dashes in the datasets

described so far. The difficulty can be increased by making dash length

= 3-9 values, which is exactly according to the convention of having dash

length thrice of dot length. This means that dashes can masquerade as dots

and spaces, and vice-versa. This is done on top of introducing leading spaces.

These datasets are called Morse 3.σ, σ being as before.

4. The Morse datasets only have 64 input features, which is quite small com-

pared to some others such as MNIST (784 features) or CIFAR (3072 features).

To decrease dataset difficulty, we introduced dilation by a factor of 4. This

is done by scaling all lengths in variation 3 by a factor of 4, i.e. frame length

(number of features) becomes 256, dot sizes and space sizes are 4-12, and

dash size is 12-36. These datasets are called Morse 4.σ, σ being as before.

120

5. Increasing the number of training examples, i.e. the size of the dataset,

makes it easier to classify since a NN has more labeled training examples to

learn from. Accordingly we chose Morse 3.1 and scaled the number of exam-

ples to obtain Morse Size x, x ∈ {1/8, 1/4, 1/2, 2, 4, 8}. For example, Morse Size

1/2 has 3500 examples for each class, for a total of 224,000 examples.

6.2 Neural Network Results and Analysis

6.2.1 Results

We initially designed a FC MLP NN to benchmark the different variations of the

Morse datasets. N0 always matches the frame length, i.e. 256 for the Morse 4.σ

datasets and 64 for all others, while NL = 64 to match the number of classes.

We used a single hidden layer with 1024 neurons, i.e. Nnet = (256, 1024, 64) for

Morse 4.σ and Nnet = (64, 1024, 64) for all other datasets. The performance,

i.e. accuracy, generally increases on adding more hidden neurons, however, we

stuck with 1024 since values above that yielded diminishing returns. The hidden

layer has ReLU activations, while the output is a softmax probability distribution.

We used the Adam optimizer with default parameters, He normal initialization for

the weights, and trained for 30 epochs using a minibatch size M = 128. We used

5/7th of the total examples for training, and 1/7th each for validation and testing.

121

Figure 6.2: Percentage classification accuracies obtained by the FC NN (described in
Section 6.2.1) on the test set of different Morse datasets. The rightmost set of bars
corresponds to Morse 4.σ with L2 regularization with λ = 10−5.

All reported accuracies are those obtained on the test samples unless otherwise

mentioned.

Validation results suggested that no regularization was required when training

on Morse 1.σ, 2.σ and 3.σ. However, the NN for Morse 4.σ is more prone to

overfitting due to having more input neurons, leading to more weight parameters.

Accordingly we applied L2 regularization with λ = 10−5, which was the best value

as determined from validation.

Test accuracy results after training the NN on the different Morse datasets are

shown in Fig. 6.2. As expected, increasing the standard deviation of noise results

in drop in performance. This effect is not felt strongly when σ = 1 since the 3σ

range can take spaces to a value of 3 (on a scale of [0, 16], i.e. before normalizing

to [0, 1]), while dots and dashes can drop to 8−3 = 5, so the probability of a space

122

Figure 6.3: Effects of noise leading to spaces (orange) getting confused (brown) with
dots and dashes (blue). Higher values of noise σ lead to increased probability of the
brown region, making it harder for the NN to discern between ‘dots and dashes’ and
spaces. The x-axis in each plot shows values in the range [0, 16], i.e. before normalizing
to [0, 1].

being confused with a dot or dash is basically 0. Confusion can occur for σ ≥ 2,

and gets worse for higher values, as shown in Fig. 6.3.

Since the codeword lengths do not often stretch beyond 32, the first half of

neurons usually encounter high input intensity values corresponding to dots and

dashes during training. This means that the latter half of neurons mostly encounter

123

Figure 6.4: Effects of increasing the size of Morse 3.1 by a factor of x on test accu-
racy after 30 epochs (blue), and (Training Accuracy − Test Accuracy) after 30 epochs
(orange).

lower input values corresponding to spaces. This aspect changes when introducing

leading spaces, which become inputs to some neurons in the first half. The result

is an increase in the variance of the input to each neuron. As a result, accuracy

drops. The degradation is worse when dashes can have a length of 3-9. Since

the lengths are drawn from a uniform distribution, 1/7th of dashes can now be

confused with 1/3rd of dots and 1/3rd of intermediate spaces. As an example, for

the + codeword which has 2 dashes, 3 dots and 4 intermediate spaces, there is a

(2/9× 1/7 + 3/9× 1/3 + 4/9× 1/3) = 29% chance of this confusion occurring. Dilating

by 4, however, reduces this chance to (2/9× 1/25 + 3/9× 1/9 + 4/9× 1/9) = 9.5%.

Accuracy is better as a result.

124

Increasing dataset size has a beneficial effect on performance. Giving the NN

more examples to train from is akin to training on a smaller dataset for more

epochs, with the important added advantage that overfitting is reduced. This is

shown in Fig. 6.4, which shows improving test accuracy as the dataset is made

larger. At the same time, the difference between final training accuracy and test

accuracy reduces, which implies that the network is generalizing better and not

overfitting. Note that Morse Size 8 has 3 million labeled training examples – a

beneficial consequence of being able to cheaply generate large quantities of syn-

thetic data.

6.2.2 Results for Pre-Defined Sparse Networks

Fig. 6.5 shows classification performance for 4 different Morse datasets when using

our method of structured pre-defined sparse NNs. Both junctions are sparsified

equally. Note how the baseline dataset only has mild performance degradation even

when ρnet is reduced to 1/4, while performance drops off much more rapidly when

dataset variations are introduced. These variations lead to increased information

content per neuron, i.e. reduced redundancy. This enforces the trend observed in

Section 3.3.2 of reduced redundancy datasets being less robust to sparsification.

Also note that as density is reduced, Morse 4.2 has the best performance out

of the non-baseline models tested in Fig. 6.5. This is because it has more weights

to begin with, due to the increased number of input neurons. For example, the

125

Figure 6.5: Effects of imposing pre-defined sparsity on classification performance for
different Morse datasets.

performance at ρnet = 1/4 for Morse 4.2 is better than FC for Morse 2.1. This

enforces the trend of ‘large and sparse’ NNs performing better than ‘small and

dense’ NNs, as discussed in Section 3.3.4. However, there is a subtle difference,

while Section 3.3.4 experimented on varying numbers of hidden neurons, here it is

the number of input neurons which varies.

We also experimented with the trend of latter junctions requiring a higher den-

sity than former, as discussed in Section 3.3.3, on the dataset Morse 1.0. Similar

to the case of Nnet = (39, 390, 39) for TIMIT, the NN used for Morse code has

symmetric junctions since Nnet = (64, 1024, 64). We set up the experiment some-

what differently than TIMIT. We swept over several possible (ρ1, ρ2) value pairs

such that they all led to the same ρnet value. We did this for two different ρnet

126

Figure 6.6: Validation performance results for varying ρ1 (x-axis top) and ρ2 (x-axis
bottom) individually so as to keep ρnet fixed at (a) 25%, (b) 50%. The black dashed
line is when ρ1 = ρ2, while the red circles indicate peak performance. The NN has
Nnet = (64, 1024, 64) and dataset used is Morse 1.0.

values – 25% in Fig. 6.6(a) and 50% in Fig. 6.6(b), and plot the peak validation

accuracy obtained in 30 epochs. The black dashed line is for the case ρ1 = ρ2, and

should be the point where the performance peaks provided both junctions have

equal importance. The fact that performance peaks to the left of the black dashed

line for both figures (red circles) indicates that a higher value for ρ2 is beneficial, as

indicated by the tend in Section 3.3.3. For example when ρnet = 50%, performance

peaks at (ρ1, ρ2) = (25%, 75%). Also note that points to the extreme left and right

go lower than the critical density for junctions 1 and 2, respectively.

127

6.3 Metrics for Dataset Difficulty

This section discusses possible metrics for quantifying how difficult a dataset is

to classify. Each sample in a dataset is a point in an N0-dimensional space. For

the Morse datasets (not considering dilation), N0 = 64. There are NL classes

of points, which is also 64 in this case. The classification problem is essentially

finding the class of any new point. Any machine learning classifier will attempt to

learn and construct decision boundaries between the classes by partitioning the

whole space into NL regions. The samples of a particular class m are clustered in

the mth region. Suppose a particular input sample actually belongs to class m.

The classifier commits an error if it ranks some class j, j 6= m, higher than m when

deciding where that input sample belongs. The probability of this happening is

PPW (j|m), where subscript PW stands for pairwise and indicates that the quantity

is specific to classes j and m. The overall probability of error P (E) would also

depend on the prior probability P (m) of the mth class occurring. Considering all

classes in the dataset, P (E) is given as:

NL∑
m=1

P (m)

 max
j∈{1,2,··· ,NL}

j 6=m

PPW (j|m)

 ≤ P (E) ≤
NL∑
m=1

P (m)

NL∑
j=1
j 6=m

PPW (j|m) (6.1)

This is a standard result in decision theory, cf. [109].

The pairwise probabilities can be approximately computed by assuming that

the locations of samples of a particular class m are from a Gaussian distribution

128

with mean located at the centroid cm, which is the average of all samples for the

class. To simplify the math, we take the average variance across all N0 dimensions

within a class – this gives the variance σ2
m for class m. The distance between 2

classes m and j is the L2-norm of the displacement vector between their centroids,

i.e. d(m, j) = ‖cm − cj‖2. A particular class will be more prone to errors if it is

close to other classes. This can be quantified by looking at
dmin(m)

σm
, where the

numerator is given as:

dmin(m) = min
j∈{1,2,··· ,NL}

j 6=m

d(m, j) (6.2)

With the Gaussian assumption, (6.1) simplifies to Vlower ≤ P (E) ≤ Vupper,

where:

Vlower =

NL∑
m=1

P (m)Q

√dmin(m)2

4σm2

 (6.3a)

Vupper =

NL∑
m=1

P (m)

NL∑
j=1
j 6=m

Q

√d(m, j)2

4σm2

 (6.3b)

where Q(.) is the tail function for a standard Gaussian distribution. See [109] for

a further exposition of these concepts.

The lower and upper bounds for error Vlower and Vupper can thus be used as

metrics for dataset difficulty, since higher values for them imply higher probabilities

of error, i.e. lower accuracy. A simpler metric can be obtained by just considering

129

σm
dmin(m)

. Higher values for this indicate that a) class m is close to some other class

and the NN will have a hard time differentiating between them, and b) Variance

of class m is high, so it is harder to form a decision boundary to separate inputs

having labels m from those with other labels. Since
σm

dmin(m)
is different for every

class, we experimented with ways to reduce it to a single measure such as taking

the minimum, the average and the median. The average worked best, which gives

our 3rd metric, which we call the distance metric Vdist:

Vdist =

∑NL

m=1
σm

dmin(m)

NL

(6.4)

Therefore, high values of Vdist lead to low accuracy.

The 4th and final metric is the threshold metric Vthresh, which we came up

with. To obtain this, we first compute the class centroids just as before. Then we

compute the L1-norm between every pair of centroids and average over N0, i.e. :

d1(m, j) =
‖cm − cj‖1

N0

(6.5)

Since all N0 features in each input sample are normalized to [0, 1], all the elements

in all the centroid vectors also lie in the range [0, 1]. So the d1 number for every

pair of classes is always between 0 and 1, in fact, it is proportional to the absolute

130

distance between the 2 classes. Then, we simply count how many of the d1 numbers

are less than a threshold, which we empirically set to 0.05. This gives Vthresh, i.e. :

Vthresh =

NL∑
m=1

NL∑
j=1
j 6=m

I (d1(m, j) < 0.05) (6.6)

The higher the value of Vthresh, the lower the accuracy. Note that the total number

of d1 values will be
(
NL

2

)
, so the count for Vthresh will typically be higher for datasets

that have more classes. This is a desired property since more number of classes

usually makes a dataset harder to classify. Note that the maximum value of Vthresh

for the Morse datasets is
(
64
2

)
= 2016.

6.3.1 Goodness of the Metrics

We computed Vlower, Vupper, Vdist and Vthresh values for all the Morse datasets and

plotted these with the test set classification accuracy results obtained from the

FC NN in Section 6.2.1. The results are shown in Fig. 6.7, while the Pearson

correlation coefficient r of each metric with the accuracy is given in Table 6.1.

Note that the metrics are an indicator of dataset difficulty, so they are negatively

correlated with accuracy. It is apparent that the Vupper and Vthresh metrics are the

best since their r values have the highest magnitude.

131

Figure 6.7: Plotting each metric for dataset difficulty vs. percentage accuracy obtained
for datasets Morse 1.σ (blue), 2.σ (red), 3.σ (green) and 4.σ (black). The accuracy
results are using the FC NN, as reported in Section 6.2.1. Color coding is just for clarity,
the r values in Table 6.1 take into account all the points regardless of color.

Table 6.1: Correlation coefficients between metrics and accuracy

Metric r

Vlower -0.59

Vupper -0.64

Vdist -0.63

Vthresh -0.64

132

6.3.2 Limitations of the Metrics

As mentioned, each class has a single variance value which is the average variance

across dimensions. This is a reasonable simplification to make because our exper-

iments indicate that the variance of the variance values for different dimensions is

small. However, this simplification possibly leads to the error bounds Vlower and

Vupper not being sufficiently tight. A possible improvement, involving significantly

more computation, would be to compute the N0 × N0 covariance matrix Km for

each class.

It is worthwhile noting that all these metrics are a function of the dataset

only and are independent of the machine learning algorithm or training

setup used. On the other hand, percentage accuracy depends on the learning

algorithm and training conditions. As shown in Fig. 6.4, increasing dataset size

leads to accuracy improvement, i.e. the dataset becoming easier, since the NN has

more training examples to learn from. However, increasing dataset size drives all

the metric values towards indicating higher difficulty. This is because the occur-

rence of more examples in each class increases its standard deviation σm and also

makes samples of a particular class more scattered, leading to reduced values for d

and d1. We hypothesize that these shortcomings of the metrics are due to the fact

that most variations of the Morse datasets have low redundancy, while the metrics

(the error bounds in particular) are designed for high signal-to-noise ratio (SNR)

problems, i.e. high redundancy.

133

6.4 Summary

This chapter presented an algorithm to generate datasets of varying difficulty on

classifying Morse code symbols. While the results have been shown for NNs, any

machine learning algorithm can be tried and the challenge arising from more dif-

ficult datasets used to fine tune it. The datasets are synthetic and consequently

may not completely represent reality unless statistically verified with real-world

tests. However, the different aspects of the generating algorithm help to mimic

real-world scenarios which can suffer from noise or other inconsistencies. This

chapter highlights one of the biggest advantages of synthetic data – the ability to

easily produce large amounts of it and thereby improve the performance of learn-

ing algorithms. The given Morse datasets are also useful for testing the limits of

various learning algorithms and identifying when they fail or possibly overfit/un-

derfit. Finally, the metrics discussed, while not perfect, can be used to understand

the inherent difficulty of the classification problem on any dataset before applying

learning algorithms to it.

With the end of this chapter, we come to the end of our achieved contributions.

The remainder of this dissertation proposal will discuss proposed research, i.e. our

expected contributions.

134

Chapter 7

Model Search

Neural networks form a fascinating branch of study which has the potential to

transform the way we lead our everyday lives and cause paradigm shifts in society.

Some ‘big’ ideas which employ NNs at their core are AI and smart systems. Despite

the explosion of interest in them, NNs offer little to human practitioners in terms

of revealing their secrets. For example, why does a particular network with a

particular number of layers and hyperparameter configuration perform well for

some given task? Is there a general way or methodology to choosing the structure

of a NN and its hyperparameters? These are the questions the field of model

search hopes to answer. Model search forms the core of our proposed research,

i.e. expected contributions.

We will broadly classify model search into two categories, each of which can be

further classified into two types. These are summarized in Fig. 7.1. The remainder

of this chapter will first explain these categories along with related work, then

discuss our proposed research.

135

Figure 7.1: Types of model search.

7.1 Architecture Search

ä Definition 8: Architecture search : Architecture search, also referred to in

some works as Neural Architecture Search (NAS), is the category of model search

concerned with the structure of NNs, including but not limited to the number,

type and connection patterns across layers.

Such structural decisions are typically made by training a NN for some time,

then using its validation performance as a metric for deciding on architectural

modifications with the potential to improve performance. The strategy for making

modifications can be implemented in several ways, as described next.

136

7.1.1 Evolutionary Algorithms

Evolutionary algorithms observe performance of many existing NN architectures,

then mutate or evolve those with good performance and use these new derived

architectures to replace other poorly-performing architectures. This is similar to

how a species evolves, i.e. desirable traits are kept and bettered, and consequently

replace undesirable traits.

Some previous works employing evolution are [14, 15, 110, 111]. The approach

followed in most of these is to treat a layer in a NN as a node in a graph, and

operations between different layers as edges of the graph. Examples of operations

include different kinds of convolutions such as normal, pointwise (using filter size

1 × 1), depthwise separable [112], and dilated [113], different kinds of pooling

layers such as max and average, different configurations of convolution filters such

as varying filter size, number and stride (displacement between two consecutive

groups of left nodes to which the convolution filter is applied), and so on. In

particular, a) [14] uses a blueprint graph for the complete NN, and the actual NN

traverses the blueprint and replaces individual graph nodes (i.e. NN layers) with

new layers which perform better, b) [110] employs genetic traits such as selection,

mutation and crossover to generate more competitive structures (i.e. performing

better on the validation set) which can replace weaker ones, c) [111] treats a CNN

motif – module consisting of a small number of convolution and pooling layers – as

a node in a graph, and assembles well-performing motifs in a hierarchical way to get

137

the complete CNN (see [111, Fig. 1]), and d) [15] proposes a regularized variant of

usual evolution by having the mutated architectures replace the oldest architectures

instead of the worst-performing ones, which is similar to elderly humans in a society

dying and new babies taking their place.

7.1.2 Reinforcement Learning (RL) methods

Reinforcement Learning (RL) differs from supervised learning in the sense that

ground-truth labels are not provided during training. Instead there is a notion of

reward for doing well, e.g. a NN being trained to play chess will get a positive

reward for winning a game, making it more likely for it to repeat moves from the

won game in future games. The entity being trained is the agent, which follows a

policy which tells it to take certain actions depending on the state it is in. These

actions and states have associated values (which are related to the rewards), and

it is the goal of the learning algorithm to maximize these values by modifying the

actions and/or policy accordingly. The reader is encouraged to refer to [114] for

a complete exposition of RL concepts. We provide a brief overview here for the

purposes of understanding model search.

Architecture search methods employing RL use validation performance, such

as accuracy, as reward. The agent is often a controller NN, typically a RNN, while

states are existing architectures for the NN whose architecture search is being per-

formed. These states are also called child networks. The actions are modifications

138

to existing architectures, and the policy determines what modifications to make,

e.g. adding a max-pooling layer after two convolution layers. Previous works using

this technique are [16, 115, 116]. In particular, a) [16] introduced the approach

of using a controller RNN, b) [116] reduced complexity by sharing parameters

between different child networks, and c) [115] used transfer learning to select best

child networks for a small dataset and applied these networks to bigger datasets,

which saves time as compared to directly performing architecture search for bigger

datasets. These works use variations of the policy gradient algorithm [117], which

parametrizes the policy for choosing architectural modifications, then improves it

by gradient ascent on its parameters using validation accuracy as reward. Thus,

the reward plays a role similar to the cost in conventional BP, except that reward

should be maximized, unlike cost.

An alternative to policy gradient is Q-learning, which picks the action to max-

imize some function estimating future rewards at every state. This is the tech-

nique used in [17,118], who also use an ε-greedy exploration strategy. This means

that the modifications to existing architectures can be completely new ones with

probability ε, or alternatively with probability 1 − ε can be an old architecture

known to perform well. This is the exploration vs exploitation tradeoff commonly

encountered in model search, i.e. how much should sticking with tried and trusted

modifications known to perform well take precedence over trying out a completely

new architecture?

139

7.1.3 Other methods of Architecture Search

This subsection lists some other notable efforts in architecture search of NNs.

[119] used a hypernetwork to generate NN architectures and set their weights,

however, the weights are restricted to a low rank space. [120] improvise on early

stopping by observing several metrics during training, such as the first- and second-

order differences between validation accuracies across epochs. [18] used surrogate

functions in an attempt to approximate the performance of NNs prior to training.

This is similar in spirit to our scatter metric, described in Section 5.5.2. Finally,

[121] parametrizes architectures and uses gradient descent using the validation cost

to better them.

7.2 Hyperparameter optimization

ä Definition 9: Hyperparameter Optimization : Hyperparameter opti-

mization is the problem of finding good values for non-trainable hyperparameters,

and dynamically varying their values as required to improve NN performance.

Note that in general, any parameter which is not trainable, i.e. is chosen and

adjusted by an entity external to the NN, is a hyperparameter. These also include

the number, type and connection pattern layers, however, for the purposes of

research focus, we have included those under the architecture search section. The

hyperparameters we are concerned with are variables used in the optimization

140

algorithm such as learning rate η and momentum coefficients, those used in regu-

larization such as the coefficient λ (there may be multiple λ values, e.g. for L1 and

L2), and those used in the training process such as batch size M . Note that this

list is not exhaustive.

There are two aspects to dealing with hyperparameters. Firstly, the search

for an appropriate value. For example in our experiments in Section 3.3, we found

from validation performance that L2 coefficient λ = 1.6 × 10−4 worked best for

the FC MLP with Nnet = (784, 224, 10), but when imposing pre-defined sparsity

with dout
net = (12, 10), the best value was λ = 0. There have been several previous

efforts in searching for good values of hyperparameters. A celebrated result is the

discovery in [20] that random search – randomly sampling hyperparameter values

within reasonable ranges – worked better than grid search – choosing values of

different hyperparameters from a finite, fixed list of values. This is because random

search samples more values of the important hyperparameters. This raises the topic

of NN performance being more sensitive to certain important hyperparameters,

as will be discussed in the next paragraph. Other techniques for hyperparameter

search include Bayesian optimization [122,123], tree-structured algorithms [19,124],

and the successive halving algorithm [125].

The second aspect in dealing with hyperparameters is scheduling, i.e. dynam-

ically changing the values of hyperparameters to optimize NN performance.

Scheduling is typically done for important hyperparameters, i.e. those which affect

141

NN performance more than others. One previous work [126] investigated the

importance of individual and groups of hyperparameters. In general, it has been

found that the learning rate is possibly the most important hyperparameter. Val-

ues that are too high tend to make the cost value oscillate about its optimum point

without reaching it, while values that are too low slow down convergence. Some

optimization algorithms automatically reduce the effective learning rate over time,

such as (2.18) for Adam. However, it has been found that periodically increas-

ing the learning rate may also be beneficial, and previous works have proposed

triangular [22], cosine [127], or batch-size dependent [21] schemes for doing so.

7.3 Our Proposed Research

Having discussed related work in model search, this section details the research

we plan to do in this domain. This section will expand the expected contributions

enumerated in Section 1.2.2 (except the one on improving hardware implementa-

tion).

7.3.1 Proposed research in Architecture Search

Several previous works on architecture search were very computationally intensive.

For example, the mean total GPU days for finding a good architecture for CIFAR-

10 are 90 in [17], 96 in [118], 150 in [18], 300 in [111], 1575 in [115] and 19,600 in [16]

142

(source [116]). This implies that the best architecture presented in [16] – achieving

a test error of 3.65% on CIFAR-10 – would have taken a single GPU more than 50

years to discover! In comparison, the technique of parameter sharing between child

networks proposed by [116] requires only 0.45 GPU days, or about 11 hours on a

single GPU to achieve 2.89% test error on CIFAR-10. This example demonstrates

the potential to accelerate the process of architecture search by designing better

algorithms, and in our case, which also target lower complexity NNs.

Table 7.1 lists two primary reasons as to why most existing methods for archi-

tecture search are time and computation intensive, and how we can build on and

extend our existing research to reduce the complexity of architecture search of

NNs.

Lower complexity neural networks

Our efforts in pre-defined sparsity have thus far being restricted to MLPs. How-

ever, this still led to complexity reduction by a factor of ∼ 5X on a typical CNN

architecture for CIFAR-100 without performance loss, as was shown in Fig. 3.3(d).

We believe that our methods can be extended to more general NN architectures,

such as CNNs and RNNs. Thus, our underlying theme in architecture search will

be to discover low complexity NNs with minimal performance degradation. This

is different from many existing works, where the goal was to discover the best

possible NN for a given task. Our goal will be to find NNs that perform well on

143

Table 7.1: Building on and extending our research to reduce the complexity of
architecture search.

Why architecture search is
resource intensive?

Leveraging our existing
research

Proposed research to sim-
plify architecture search

The NNs being discovered
via architecture search are
quite complex, involving
a large number of inter-
connected layers (often on
the order of a hundred),
hence take many GPU
hours to train.

Our method of pre-defined
sparsity results in NNs
with lower complexity
which train faster.

We plan to extend
complexity reduction
methods beyond MLPs
and develop low complex-
ity connection patterns
for other kinds of NNs.

The decisions regarding
how to modify existing
architectures can only
be taken after training
until convergence (so as
to get rewards for RL
methods for example).
Training on large datasets
for hundreds of epochs
needs many GPU hours.

The trends and design
guidelines we discovered,
along with methods to
predict performance
prior to training like
scatter, will result in a
net reduction in training
time since several sparse
networks discovered by
architecture search can be
filtered out quickly.

We plan to improve per-
formance predicting mech-
anisms by gaining a
deeper understanding
of NNs, such as appro-
priate sparsity levels, and
crucial parameters which
can be monitored to pro-
vide information leading
to early stopping of a
training run.

a given task, while not taking several days of manual tuning of architectures or

several weeks worth of GPU hours performing architectural search.

Deeper understanding of neural networks

Our second goal is to attempt to open the ‘black box’ of NNs and try to understand

which parameters and hyperparameters are crucial to performance. As was demon-

strated in Fig. 3.2, most FC layers have weights which are close to zero. This was

an insight which led us to believe that most weights can be safely removed without

144

affecting performance. The results in Section 3.3 demonstrated the importance of

properly choosing sparse architectures, such as designing ‘large and sparse’ net-

works and increasing the density of later junctions. We also plan to dynamically

monitor parameters, such as the rate of change in the values of certain trainable

parameters, how many units are ‘dead’ (zero activations) as a result of applying

ReLU, and so on. These, along with further investigation into performance pre-

dicting measures and surrogate functions like scatter, will help us perform more

informed early stopping and better filter out underperforming models. These traits

are crucial for more efficient model search i.e. using less time and computational

resources.

Summarizing proposed research in architectural search

In summary, we plan to automate the process of designing well-performing, low

complexity sparse NNs for various applications. While we have not formed a

clear consensus regarding evolutionary algorithms vs. RL methods, our approach

seems to be better suited for evolutionary algorithms. This is because we plan to

make specific modifications at regular training intervals, such as reducing density

or changing connection patterns in the NN. This is better suited to evolutionary

techniques such as mutation, which is a more natural approach to try as compared

to designing rewards for RL methods.

145

7.3.2 Proposed research in Hyperparameter Optimization

We have already discovered some results regarding hyperparameters, e.g. pre-

defined sparse NNs require less regularization. There are some other ideas we

have at the moment, such as customized learning rates for more crucial param-

eters in sparse NNs. However, we have decided to focus on architecture search

first, and turn to hyperparameter optimization based on availability of time and

resources.

146

Chapter 8

Conclusion

This chapter concludes this dissertation proposal. We provide a summary of the

field of neural networks, our achieved contributions, and the work discussed in this

document, before ending with concrete plans for future work.

8.1 Summary

Despite the recent spurt of interest in NNs, they are not a completely new concept.

The perceptron, which can be considered a very simple NN, was created in 1958

by Rosenblatt [128]. After a few decades of research stagnation, interest in NNs

was again piqued in 1986 when Rumelhart et al. proposed backpropagation [129].

However, computers in the 1980s and 90s were not equipped to handle machine

learning and NNs on a large scale as is done today. It was much more recently in

the 2010s, perhaps with the publication of AlexNet [1], that the research interest

and usage of NNs have skyrocketed. As a result, NNs have become the backbone

of many AI applications nowadays, and are the major driving force behind the

wide variety of ‘smart’ technologies that have become ubiquitous in our lives. This

exponential growth in interest is summarized by Figs. 8.1 and 8.2, which show the

147

Figure 8.1: Number of AI papers on Scopus from 1998–2017, grouped by subcategory.
Figure courtesy [130].

number of papers related to AI published in two widely used research databases –

Elsevier’s Scopus, and arXiv, respectively. Notice how NN papers on Scopus have

tripled in the last decade, while net AI papers on arXiv have grown by more than

10X from 2010 to 2017.

The growth in interest in NNs has also translated to a growth in their complex-

ity. In particular, there has been a tendency in industry players to drive the field

of NNs forward by exponentially increasing the number of parameters, as shown

in Fig. 8.3. While this parameter explosion has led to pushing the frontiers of

what NNs can achieve, it has often sacrificed understandability, i.e. being able

to understand why a NN is performing in a certain way and how it works. This

148

Figure 8.2: Number of AI papers on arXiv from 2010–2017, grouped by subcategory.
Figure courtesy [130].

Figure 8.3: Total number of trainable parameters in some popular deep NN architectures
over the years. Figure courtesy [131, Fig. 1].

149

status quo is concerning because it puts the reins of NN research into the sole

hands of a few entities with the financial wherewithal to deploy GPUs and other

computational resources at a scale well beyond the reach of most other entities.

In other words, the NN parameter explosion has resulted in an oligarchy of sorts,

where the barrier to entry in terms of required computational resources can push

many prospective researchers away.

Our Contributions

The work presented in this dissertation proposal attempts to democratize

the development of NNs by lowering their complexity. In particular, our

proposed method of pre-defined sparsity simplifies the computational bur-

den of NNs throughout their development cycle, i.e. training and inference.

The computational complexity reduction also translates to storage complex-

ity reduction when implementing NNs on custom hardware, such as we have

developed. Moreover, our goal has not only been the simplification of NNs,

but also attempts to understand why they perform in certain ways by ana-

lyzing their connection patterns. This will continue on into our expected

contributions regarding model search, i.e. understanding how and why NNs

work the way they do, attempting to predict their performance, and the

consequent search for well-performing low-complexity NNs. As an additional

effort, we have also developed a family of datasets of varying difficulty for

benchmarking machine learning algorithms and applications.

150

8.2 Future Work

Our first future effort will be pipelining the hardware implementation described in

Section 4.7 to improve its operational speed. This is estimated to take a month,

i.e. May 2019, and will likely be continued by other researchers in our team in the

realm of expansion to bigger NNs, possibly using cloud FPGA resources.

After that, we will focus on model search. Our first target in this regard will be

to automate the process of discovering good sparse NNs, based on the trends and

guidelines discussed in Section 3.3, and performance predicting measures building

on the concepts discussed in Section 5.5. As we discover good sparse NNs and con-

nection patterns, we will gain a deeper understanding of NNs and the widespread

applicability of sparsifying techniques. This will lead to architecture search of low

complexity NNs, as described in Section 7.1. Depending on our results, we expect

this to take several months to a year, and will culminate in the final dissertation.

Depending on time and resources beyond that, we will look into hyperparameter

optimization and more general techniques for model search of NNs.

8.3 Final Word

We believe our research has the potential to enable NN exploration on a wide

scale. For more information on our research group and mission, the reader is

151

encouraged to visit [132] – the website for Hardware Accelerated Learning (HAL)

at the University of Southern California (USC).

152

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Proc. Advances in Neural Informa-
tion Processing Systems 25 (NeurIPS), 2012, pp. 1097–1105.

[2] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint
arXiv:1604.07316, 2016.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition: The shared views of
four research groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
82–97, Nov 2012.

[4] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature
detectors,” arXiv preprint arXiv:1207.0580, 2012.

[5] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-
resnet and the impact of residual connections on learning,” arXiv preprint
arXiv:1602.07261, 2016.

[6] A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro,
“Deep learning with COTS HPC systems,” in Proc. 30th Int. Conf. Machine
Learning (ICML), vol. 28, 2013, pp. III–1337–III–1345.

[7] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connec-
tions for efficient neural networks,” in Proc. Advances in Neural Information
Processing Systems 28 (NeurIPS), 2015, pp. 1135–1143.

[8] N. P. Jouppi, C. Young, N. Patil et al., “In-datacenter performance analysis
of a tensor processing unit,” in 2017 ACM/IEEE 44th Annu. Int. Symp.
Computer Architecture (ISCA), June 2017.

153

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2015, pp.
1–9.

[10] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev, “Compressing deep convolu-
tional networks using vector quantization,” arXiv preprint arXiv:1412.6115,
2014.

[11] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Com-
pressing neural networks with the hashing trick,” in Proc. 32nd Int. Conf.
Machine Learning (ICML), 2015.

[12] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” in Proc.
Int. Conf. Learning Representations (ICLR), 2016.

[13] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient inference engine on compressed deep neural network,”
in Proc. 43rd Int. Symp. Computer Architecture (ISCA), 2016.

[14] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. F. O. Francon, B. Raju,
H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat, “Evolving deep neural
networks,” arXiv preprint arXiv:1703.00548, 2017.

[15] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for
image classifier architecture search,” arXiv preprint arXiv:1802.01548, 2018.

[16] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learn-
ing,” arXiv preprint arXiv:1611.01578, 2016.

[17] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in Proc. Int. Conf. Learning
Representations (ICLR), 2017.

[18] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-
Fei, A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” arXiv preprint arXiv 1712.00559, 2017.

[19] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, “Algorithms for hyper-
parameter optimization,” in Proc. Advances in Neural Information Process-
ing Systems 24 (NeurIPS), 2011, pp. 2546–2554.

[20] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-
tion,” Journal of Machine Learning Research (JMLR), vol. 13, pp. 281–305,
2012.

154

[21] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: training
ImageNet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[22] L. N. Smith, “Cyclical learning rates for training neural networks,” in Proc.
IEEE Winter Conf. on Applications of Computer Vision (WACV), 2017.

[23] S. Dey, K.-W. Huang, P. A. Beerel, and K. M. Chugg, “Pre-defined sparse
neural networks with hardware acceleration,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 332–345, June
2019.

[24] S. Dey, K.-W. Huang, P. A. Beerel, and K. M. Chugg, “Characterizing sparse
connectivity patterns in neural networks,” in Proc. 2018 Information Theory
and Applications Workshop (ITA), Feb 2018, pp. 1–9.

[25] S. Dey, Y. Shao, K. M. Chugg, and P. A. Beerel, “Accelerating training of
deep neural networks via sparse edge processing,” in Proc. 26th Int. Conf.
Artificial Neural Networks (ICANN). Springer, Sep 2017, pp. 273–280.

[26] S. Dey, D. Chen, Z. Li, S. Kundu, K.-W. Huang, K. M. Chugg, and
P. A. Beerel, “A highly parallel FPGA implementation of sparse neural net-
work training,” in Proc. Int. Conf. ReConFigurable Computing and FPGAs
(ReConFig), Dec 2018, pp. 1–4, expanded preprint version available at
https://arxiv.org/abs/1806.01087.

[27] S. Dey, P. A. Beerel, and K. M. Chugg, “Interleaver design for deep neural
networks,” in Proc. 51st Asilomar Conf. Signals, Systems, and Computers
(ACSSC), Oct 2017, pp. 1979–1983.

[28] S. Dey, K. M. Chugg, and P. A. Beerel, “Morse code datasets for machine
learning,” in Proc. 9th Int. Conf. Computing, Communication and Network-
ing Technologies (ICCCNT), Jul 2018, pp. 1–7.

[29] S. Dey, “Github repository: usc-hal/morse-dataset,” https://github.com/
usc-hal/morse-dataset.

[30] ——, “Matrix calculus,” University of Southern California, Tech. Rep., 2019,
available online at https://www.researchgate.net/publication/332131671
Matrix Calculus.

[31] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proc. 27th Int. Conf. Machine Learning (ICML), 2010,
pp. 807–814.

155

https://arxiv.org/abs/1806.01087
https://github.com/usc-hal/morse-dataset
https://github.com/usc-hal/morse-dataset
https://www.researchgate.net/publication/332131671_Matrix_Calculus
https://www.researchgate.net/publication/332131671_Matrix_Calculus

[32] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,” Mas-
ter’s thesis, TU Munich, 1991.

[33] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. 13th Int. Conf. Artificial Intelligence
and Statistics, 2010, pp. 249–256.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification,” in Proc. IEEE Int.
Conf. Computer Vision (ICCV), 2015, pp. 1026–1034.

[35] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiv:1609.04747, 2016.

[36] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. Int. Conf. Learning Representations (ICLR), 2014.

[37] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. 32nd Int. Conf.
Machine Learning (ICML), 2015.

[38] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[39] A. Deshpande, “A beginner’s guide to understanding convolu-
tional neural networks,” https://adeshpande3.github.io/A-Beginner%
27s-Guide-To-Understanding-Convolutional-Neural-Networks/, Jul 2016.

[40] W. Bao, J. Yue, and Y. Rao, “A deep learning framework for financial time
series using stacked autoencoders and long-short term memory,” PLoS ONE,
vol. 12, Jul 2017.

[41] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. D. Freitas, “Predict-
ing parameters in deep learning,” in Proc. Advances in Neural Information
Processing Systems 26 (NeurIPS), 2013, pp. 2148–2156.

[42] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding
deep learning requires rethinking generalization,” in Proc. Int. Conf. Learn-
ing Representations (ICLR), 2017.

[43] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bina-
rized neural networks: Training deep neural networks with weights and acti-
vations constrained to +1 or -1,” arXiv preprint arXiv:1602.02830, 2016.

156

http://www.deeplearningbook.org
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

[44] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network com-
puting,” in Proc. 2016 ACM/IEEE 43rd Annu. Int. Symp. Computer Archi-
tecture (ISCA), 2016, pp. 1–13.

[45] B. Reagen, P. Whatmough, R. Adolf et al., “Minerva: Enabling low-power,
highly-accurate deep neural network accelerators,” in Proc. 2016 ACM/IEEE
43rd Annu. Int. Symp. Computer Architecture (ISCA), 2016, pp. 267–278.

[46] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex pruning
of deep neural networks with performance guarantee,” in Proc. Advances in
Neural Information Processing Systems 30 (NeurIPS), 2017.

[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[48] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks
with low precision multiplications,” arXiv preprint arXiv:1412.7024, 2014.

[49] S. Gupta, A. Agarwal, K. Gopalakrishnan, and P. Narayanan, “Deep learning
with limited numerical precision,” arXiv preprint arXiv:1502.02551, 2015.

[50] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and C. Zhang, “FPGA-
accelerated dense linear machine learning: A precision-convergence trade-
off,” in Proc. IEEE Int. Symp. Field-Programmable Custom Computing
Machines, 2017.

[51] V. Sindhwani, T. Sainath, and S. Kumar, “Structured transforms for small-
footprint deep learning,” in Proc. Advances in Neural Information Processing
Systems 28 (NeurIPS), 2015, pp. 3088–3096.

[52] S. Wang, Z. Li, C. Ding, B. Yuan, Y. Wang, Q. Qiu, and Y. Liang, “C-
LSTM: Enabling efficient LSTM using structured compression techniques
on FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate
Arrays, 2018.

[53] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity
in deep neural networks,” in Proc. Advances in Neural Information Process-
ing Systems 29 (NeurIPS), 2016, pp. 2074–2082.

[54] S. Srinivas, A. Subramanya, and R. V. Babu, “Training sparse neural net-
works,” in IEEE Conf. Computer Vision and Pattern Recognition Workshops
(CVPRW), July 2017, pp. 455–462.

157

[55] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Dian-
nao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning,” in Proc. 19th Int. Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014, pp. 269–284.

[56] S. Zhang, Z. Du, L. Zhang et al., “Cambricon-X: An accelerator for sparse
neural networks,” in Proc. 2016 49th Annu. IEEE/ACM Int. Symp. Microar-
chitecture (MICRO), 2016, pp. 1–12.

[57] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE
Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[58] D. Shin, J. Lee, J. Lee, and H. Yoo, “14.2 DNPU: An 8.1TOPS/W reconfig-
urable CNN-RNN processor for general-purpose deep neural networks,” in
IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb 2017, pp. 240–241.

[59] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, and J. Seo, “ALAMO: FPGA acceler-
ation of deep learning algorithms with a modularized RTL compiler,” Inte-
gration, the VLSI Journal, 2018.

[60] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s. Seo,
and Y. Cao, “Throughput-optimized OpenCL-based FPGA accelerator for
large-scale convolutional neural networks,” in Proc. 2016 ACM/SIGDA Int.
Symp. Field-Programmable Gate Arrays. ACM, 2016, pp. 16–25.

[61] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang, H. Yang, and W. B. J. Dally, “ESE: Efficient speech recognition
engine with sparse LSTM on FPGA,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2017, pp. 75–84.

[62] R. G. Gironés, R. C. Palero, J. C. Boluda, and A. S. Cortés, “FPGA imple-
mentation of a pipelined on-line backpropagation,” Journal of VLSI signal
processing systems for signal, image and video technology, vol. 40, no. 2, pp.
189–213, Jun 2005.

[63] N. Izeboudjen, A. Farah, H. Bessalah, A. Bouridene, and N. Chikhi,
“Towards a platform for FPGA implementation of the MLP based back
propagation algorithm,” in Computational and Ambient Intelligence, 2007,
pp. 497–505.

[64] A. Gomperts, A. Ukil, and F. Zurfluh, “Development and implementation
of parameterized FPGA-based general purpose neural networks for online
applications,” IEEE Transactions on Industrial Informatics, vol. 7, no. 1,
pp. 78–89, Feb 2011.

158

[65] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, “Dadiannao: A machine-learning supercomputer,”
in 47th Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec 2014, pp. 609–
622.

[66] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU: A scalable
deep learning accelerator unit on FPGA,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 3, pp. 513–517,
Mar 2017.

[67] A. Bourely, J. P. Boueri, and K. Choromonski, “Sparse neural network
topologies,” arXiv preprint arXiv:1706.05683, 2017.

[68] A. Prabhu, G. Varma, and A. M. Namboodiri, “Deep expander net-
works: Efficient deep networks from graph theory,” arXiv preprint
arXiv:1711.08757, 2017.

[69] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and
A. Liotta, “Scalable training of artificial neural networks with adaptive sparse
connectivity inspired by network science,” Nature Communications, vol. 9,
2018.

[70] J. Yosinski and H. Lipson, “Visually debugging restricted boltzmann machine
training with a 3D example,” in Proc. 29th Int. Conf. Machine Learning
(ICML), 2012.

[71] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of handwrit-
ten digits,” http://yann.lecun.com/exdb/mnist/.

[72] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A new bench-
mark collection for text categorization research,” Journal of machine learning
research, vol. 5, pp. 361–397, Apr 2004.

[73] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L.
Dahlgren, and V. Zue, “TIMIT acoustic-phonetic continuous speech corpus,”
https://catalog.ldc.upenn.edu/LDC93S1.

[74] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition using
hidden markov models,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 11, pp. 1641–1648, Nov 1989.

[75] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measurement
of the psychological magnitude pitch,” The Journal of the Acoustical Society
of America, vol. 8, no. 185, 1937.

159

http://yann.lecun.com/exdb/mnist/
https://catalog.ldc.upenn.edu/LDC93S1

[76] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Mas-
ter’s thesis, University of Toronto, 2009.

[77] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective, 4th ed. Pearson, 2010.

[78] D. Masters and C. Luschi, “Revisiting Small Batch Training for Deep Neural
Networks,” arXiv preprint arXiv:1804.07612, 2018.

[79] Digilent, “Nexys 4 DDR,” https://reference.digilentinc.com/reference/
programmable-logic/nexys-4-ddr/start.

[80] Xilinx, “VIRTEX ultra-scale+,” https://www.xilinx.com/products/
silicon-devices/fpga/virtex-ultrascale-plus.html.

[81] Amazon Web Services, “Amazon EC2 F1 instances,”
https://aws.amazon.com/ec2/instance-types/f1/.

[82] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. Computer Vision and Pattern Recognition, 2016, pp.
770–778.

[83] A. S. Asratian, T. M. J. Denley, and R. Haggkvist, Bipartite Graphs and
Their Applications. Cambridge University Press, 1998.

[84] A. Barvinok, “On the number of matrices and a random matrix with pre-
scribed row and column sums and 0–1 entries,” Advances in Mathematics,
vol. 224, no. 1, pp. 316–339, 2010.

[85] G. Masera, G. Piccinini, M. R. Roch, and M. Zamboni, “VLSI architectures
for turbo codes,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 7, no. 3, pp. 369–379, 1999.

[86] T. Brack, M. Alles, T. Lehnigk-Emden et al., “Low complexity LDPC code
decoders for next generation standards,” in Design, Automation & Test in
Europe Conf. & Exhibition (DATE), 2007, pp. 1–6.

[87] S. Crozier and P. Guinand, “High-performance low-memory interleaver banks
for turbo-codes,” in Vehicular Technology Conf., 2001. VTC 2001 Fall. IEEE
VTS 54th, vol. 4, 2001, pp. 2394–2398.

[88] G. M. Weiss and F. Provost, “Learning when training data are costly: The
effect of class distribution on tree induction,” Journal of Artificial Intelli-
gence Research, vol. 19, pp. 315–354, 2003.

160

https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html

[89] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” in Proc. Int. Conf. Learning Representations (ICLR), 2015.

[90] A. Schumacher, “Problems with imagenet and its solutions,” https:
//planspace.org/20170911-problems with imagenet and its solutions/,
September 2017.

[91] J. Prendki, “The curse of big data labeling and three
ways to solve it,” https://aws.amazon.com/blogs/apn/
the-curse-of-big-data-labeling-and-three-ways-to-solve-it/, November
2018.

[92] M. Gregory and K. Ocasio, “The [hidden] challenges of ML
series: Quadrant 2 data preparation,” https://www.ntconcepts.com/
the-hidden-challenges-of-ml-series-quadrant-2-data-preparation/, February
2019.

[93] X. Peng, B. Sun, K. Ali, and K. Saenko, “Learning deep object detectors
from 3D models,” in Proc. IEEE Int. Conf. Computer Vision (ICCV). IEEE
Computer Society, 2015, pp. 1278–1286.

[94] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Toward geometric deep
SLAM,” arXiv preprint arXiv:1707.07410, 2017.

[95] T. Anh Le, A. G. Baydin, R. Zinkov, and F. Wood, “Using synthetic
data to train neural networks is model-based reasoning,” arXiv preprint
arXiv:1703.00868, 2017.

[96] N. Patki, R. Wedge, and K. Veeramachaneni, “The synthetic data vault,” in
Proc. IEEE Int. Conf. Data Science and Advanced Analytics (DSAA), 2016,
pp. 399–410.

[97] C.-H. Luo and C.-H. Shih, “Adaptive morse-coded single-switch communica-
tion system for the disabled,” Int. Journal of Bio-Medical Computing, vol. 41,
no. 2, pp. 99–106, 1996.

[98] C.-H. Yang, C.-H. Yang, L.-Y. Chuang, and T.-K. Truong, “The application
of the neural network on morse code recognition for users with physical
impairments,” Proc. Institution of Mechanical Engineers, Part H: Journal
of Engineering in Medicine, vol. 215, no. 3, pp. 325–331, 2001.

[99] C.-H. Yang, L.-Y. Chuang, C.-H. Yang, and C.-H. Luo, “Morse code applica-
tion for wireless environmental control systems for severely disabled individu-
als,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 11, no. 4, pp. 463–469, Dec 2003.

161

https://planspace.org/20170911-problems_with_imagenet_and_its_solutions/
https://planspace.org/20170911-problems_with_imagenet_and_its_solutions/
https://aws.amazon.com/blogs/apn/the-curse-of-big-data-labeling-and-three-ways-to-solve-it/
https://aws.amazon.com/blogs/apn/the-curse-of-big-data-labeling-and-three-ways-to-solve-it/
https://www.ntconcepts.com/the-hidden-challenges-of-ml-series-quadrant-2-data-preparation/
https://www.ntconcepts.com/the-hidden-challenges-of-ml-series-quadrant-2-data-preparation/

[100] C. P. Ravikumar and M. Dathi, “A fuzzy-logic based morse code entry system
with a touch-pad interface for physically disabled persons,” in Proc. IEEE
Annu. India Conf. (INDICON), Dec 2016.

[101] T. W. King, Modern Morse Code in Rehabilitation and Education: New
Applications in Assistive Technology, 1st ed. Allyn and Bacon, 1999.

[102] R. Sheinker, “Morse code - apps on google play,” https://play.google.com/
store/apps/details?id=com.dev.morsecode&hl=en, Aug 2017.

[103] F. Bonnin, “Morse-it on the app store,” https://itunes.apple.com/us/app/
morse-it/id284942940?mt=8, Mar 2018.

[104] D. Hill, “Temporally processing neural networks for morse code recognition,”
in Theory and Applications of Neural Networks. Springer London, 1992, pp.
180–197.

[105] G. N. Aly and A. M. Sameh, “Evolution of recurrent cascade correlation
networks with distributed collaborative species,” in Proc. 1st IEEE Symp.
Combinations of Evolutionary Computation and Neural Networks, 2000, pp.
240–249.

[106] R. Li, M. Nguyen, and W. Q. Yan, “Morse codes enter using finger gesture
recognition,” in Proc. Int. Conf. Digital Image Computing: Techniques and
Applications (DICTA), Nov 2017.

[107] International Morse Code, Radiocommunication Sector of International
Telecommunication Union, Oct 2009, available at http://www.itu.int/rec/
R-REC-M.1677-1-200910-I/.

[108] R. M. Zur, Y. Jiang, L. L. Pesce, and K. Drukker, “Noise injection for
training artificial neural networks: A comparison with weight decay and
early stopping,” Medical Physics, vol. 36, no. 10, pp. 4810–4818, Oct 2009.

[109] K. Chugg, A. Anastasopoulos, and X. Chen, Iterative Detection: Adaptiv-
ity, Complexity Reduction, and Applications. Springer Science & Business
Media, 2012, vol. 602.

[110] L. Xie and A. Yuille, “Genetic CNN,” in IEEE Int. Conf. Computer Vision
(ICCV), Oct 2017, pp. 1388–1397.

[111] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu, “Hier-
archical representations for efficient architecture search,” in Proc. Int. Conf.
Learning Representations (ICLR), 2018.

162

https://play.google.com/store/apps/details?id=com.dev.morsecode&hl=en
https://play.google.com/store/apps/details?id=com.dev.morsecode&hl=en
https://itunes.apple.com/us/app/morse-it/id284942940?mt=8
https://itunes.apple.com/us/app/morse-it/id284942940?mt=8
http://www.itu.int/rec/R-REC-M.1677-1-200910-I/
http://www.itu.int/rec/R-REC-M.1677-1-200910-I/

[112] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” arXiv preprint arXiv:1610.02357, 2016.

[113] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-
tions,” in Proc. Int. Conf. Learning Representations (ICLR), 2016.

[114] R. S. Sutton and A. G. Barto, Reinforcement Learning, 2nd ed. MIT Press,
2018.

[115] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable archi-
tectures for scalable image recognition,” in IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), 2018.

[116] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” arXiv preprint arXiv:1802.03268,
2018.

[117] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Machine Learning, vol. 8, no. 3, pp. 229–256,
May 1992.

[118] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise
neural network architecture generation,” arXiv preprint arXiv:1708.05552,
2017.

[119] A. Brock, T. Lim, J. Ritchie, and N. Weston, “SMASH: One-shot
model architecture search through hypernetworks,” arXiv preprint arXiv
1708.05344, 2017.

[120] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural archi-
tecture search using performance prediction,” in Proc. Int. Conf. Learning
Representations (ICLR), 2018.

[121] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[122] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization
of machine learning algorithms,” in Proc. Advances in Neural Information
Processing Systems 25 (NeurIPS), 2012, pp. 2951–2959.

[123] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A.
Patwary, Prabhat, and R. P. Adams, “Scalable bayesian optimization using
deep neural networks,” arXiv preprint arXiv:1502.05700, 2015.

163

[124] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architec-
tures,” in Proc. 30th Int. Conf. Machine Learning (ICML), 2013.

[125] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyper-
band: Bandit - based configuration evaluation for hyperparameter optimiza-
tion,” in Proc. Int. Conf. Learning Representations (ICLR), 2017.

[126] F. Hutter, H. Hoos, and K. Leyton-Brown, “An efficient approach for assess-
ing hyperparameter importance,” in Proc. 31st Int. Conf. Machine Learning
(ICML), 2014, pp. I–754–I–762.

[127] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm
restarts,” in Proc. Int. Conf. Learning Representations (ICLR), 2017.

[128] F. Rosenblatt, “The perceptron: A probabilistic model for information stor-
age and organization in the brain,” Psychological Review, pp. 65–386, 1958.

[129] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[130] D. Enskat, “AI index 2018: Europe – china – united
states; AI outpaces CS,” https://warrenenskat.com/
ai-index-2018-europe-china-united-states-ai-outpaces-cs/, Dec 2018.

[131] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi, “Scaling
for edge inference of deep neural networks,” Nature Electronics, vol. 1, no. 4,
pp. 216–222, 2018.

[132] USC HAL team, “Hardware accelerated learning,” https://hal.usc.edu/.

164

https://warrenenskat.com/ai-index-2018-europe-china-united-states-ai-outpaces-cs/
https://warrenenskat.com/ai-index-2018-europe-china-united-states-ai-outpaces-cs/
https://hal.usc.edu/

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Abstract
	Related Publications with links
	Introduction
	Neural networks
	Complexity of neural networks
	Model search

	Dissertation Contributions
	Achieved Contributions
	Expected Contributions

	Proposal Organization

	Background
	Mathematical Notation
	Notation and Basic Operations for Neural Networks
	Feedforward (FF)
	Backpropagation (BP)
	Update (UP)

	Training and Inference
	Other types of networks
	Convolutional neural networks
	Recurrent neural networks

	Pre-Defined Sparsity
	Related Work
	Structured Pre-defined sparsity
	Motivation and Preliminary Examples
	Structured Constraints
	Modifications to Neural Network Operations

	Performance Results, Trends and Guidelines
	Datasets and Experimental Configuration
	Dataset Redundancy
	Individual junction densities
	`Large and sparse' vs `small and dense' networks

	Summary

	Hardware Architecture
	Junction pipelining and Operational parallelism
	Memory organization
	Clash-freedom
	Batch size
	Architectural Constraints
	Special Case: Processing a FC junction
	FPGA Implementation
	Network Configuration and Training Setup
	Bit Width Considerations
	Implementation Details

	Summary

	Connection Patterns
	Biadjacency Matrices
	Clash-free memory access patterns
	Types of memory access patterns

	Comparison between classes of Pre-defined Sparsity
	Comparison to other methods of sparsity
	Metrics for Connection Patterns
	Window biadjacency matrices
	Scatter

	Dataset Engineering
	Generating Algorithm
	Variations and Difficulty Scaling

	Neural Network Results and Analysis
	Results
	Results for Pre-Defined Sparse Networks

	Metrics for Dataset Difficulty
	Goodness of the Metrics
	Limitations of the Metrics

	Summary

	Model Search
	Architecture Search
	Evolutionary Algorithms
	Reinforcement Learning (RL) methods
	Other methods of Architecture Search

	Hyperparameter optimization
	Our Proposed Research
	Proposed research in Architecture Search
	Proposed research in Hyperparameter Optimization

	Conclusion
	Summary
	Future Work
	Final Word

	References

