
Exploring	Complexity	
Reduction	for	
Learning	in	Deep	
Neural	Networks

Sourya	Dey	

PhD	Qualifying	Exam	

April	23rd,	2019



University	of	Southern	California

Outline

Introduction	and	Background

Pre-Defined	Sparsity

Hardware	Architecture

Connection	Patterns

Dataset	Engineering

Model	Search

Sourya	Dey �2

Achieved	
Research	

Contributions

Proposed	
Research



University	of	Southern	California

Outline

Introduction	and	Background

Pre-Defined	Sparsity

Hardware	Architecture

Connection	Patterns

Dataset	Engineering

Model	Search

Sourya	Dey �3



University	of	Southern	California

Introduction

Neural	networks	(NNs)	are	key	
machine	learning	technologies	

➢ Artificial	intelligence	

➢ Self-driving	cars	

➢ Speech	recognition	

➢ Face	ID	

➢ and	more	smart	stuff	…

Sourya	Dey �4



University	of	Southern	California

Overview

Modern	neural	networks	suffer	
from	parameter	explosion	

Training	can	take	weeks	on	CPU	

Cloud	GPU	resources	are	expensive	

Our	research	reduces	complexity	
of	neural	networks	with	minimal	
performance	degradation

Sourya	Dey �5



University	of	Southern	California

Summary of 
Contributions

• Pre-defined	sparsity	to	reduce	
complexity	of	neural	networks	

• Hardware	architecture	to	leverage	pre-
defined	sparsity	

• Analyzing	connection	patterns	and	
performance	predicting	measures	

• Family	of	synthetic	datasets	on	Morse	
code	with	tunable	difficulty

Achieved:

• Better	pipelining	to	improve	hardware	
architecture	

• Architecture	search	of	low	complexity	
neural	networks

Proposed:

Sourya	Dey �6



University	of	Southern	California

Notation

Sourya	Dey �7

Layer	0

Layer	1

Layer	L	=	2

Junction	1

Junction	2

Trainable	
Parameters

Weights Biases

Multilayer	Perceptron	(MLP)



University	of	Southern	California

Notation

Sourya	Dey �7

Layer	0

Layer	1

Layer	L	=	2

Junction	1

Junction	2

Trainable	
Parameters

Weights Biases

Fully	connected	(FC)

Multilayer	Perceptron	(MLP)



University	of	Southern	California

Neural Networks Operations for Classification

Training	(training	data)	

➢ Feedforward	(FF)	

➢ Backpropagation	(BP)	

➢ Update	parameters	(UP)	

Inference	(validation	and	test	data)	

➢ Feedforward	(FF)	only

Sourya	Dey �8

Test	data	performance	used	as	

metric	for	goodness	of	network



University	of	Southern	California

Feedforward (FF)

Sourya	Dey �9

Previous	layer	activation	
(Starts	from	input	features	a0)

Linear	output

Activation	output

Non-linear	activation	function	
ReLU	/	Sigmoid	for	hidden	layers	
Softmax	for	output	layer

Activation	derivative



University	of	Southern	California

Backpropagation (BP)

Sourya	Dey �10

Cross-entropy	Cost

Delta	(output	layer)

Delta	(intermediate	layers)

Ground	truth	labels	
Typically	one-hot	for	classification

Hadamard	product	
(element-wise	multiplication)



University	of	Southern	California

Update (UP)

Sourya	Dey �11

Learning	Rate	
Hyperparameter

Batch	size

Training	sample	number

Gradient	of	cost	w.r.t	weights

Gradient	of	cost	w.r.t	biases



University	of	Southern	California

The Complexity Conundrum

➢Storage	Complexity	-	
Dominated	by	weights	

➢Computational	Complexity	-	
Also	dominated	by	weights

FF

BP

UP

A	typical	fully	connected	MLP	for	classifying	

MNIST	handwritten	digits	has	~105	weights

All	the	weights	are	used	

in	all	3	operations

Sourya	Dey �12



University	of	Southern	California

Existing methods to reduce Complexity

Sourya	Dey �13

Algorithms

• Gong	2014	–	Vector	
quantization	

• Chen	2015	–	
HashedNets	

• Sindhwani	2015	–	
Structured	transforms	

• Srinivas	2017	–	
Special	regularizers	

• Aghasi	2017	–	Net-
trim

ASIC	Implementations

• Chen	2014	–	Diannao	
• Han	2016	–	Efficient	
Inference	Engine	

• Reagen	2016	–	
Minerva	

• Zhang	2016	–	
Cambricon-X	

• Chen	2017	–	Eyeriss

FPGA	Implementations

• Courbariaux	2016	-	
Binarized	nets	

• Albericio	2016	–	
Cnvlutin	

• Suda	2016	–	Open-CL	
based	

• Ma	2018	–	ALAMO

Training	Focused

• Girones	2005	–	
Pipelined	on-line	BP	

• Gomperts	2011	–	
Parametrized	FPGA-
based	NNs	

•Wang	2017	–	DLAU

These	reduce	parameters	during	inference,	
but	training	complexity	remains	intensive

These	focus	on	training,	but	
do	not	delete	parameters



University	of	Southern	California

Outline

Introduction	and	Background

Pre-Defined	Sparsity

Hardware	Architecture

Connection	Patterns

Dataset	Engineering

Model	Search

Achieved	
Research	

Contributions

Sourya	Dey �14



University	of	Southern	California

Our Work:  
Pre-defined Sparsity

Pre-define	a	sparse	connection	
pattern	prior	to	training	

Use	this	sparse	network	for	both	
training	and	inference	

Reduced	training	and	
inference	complexity

Junction	
Densities Overall	Density

Structured	Constraints:	
Fixed	in-,	out-degrees	
for	every	node

Sourya	Dey �15



University	of	Southern	California

Motivation behind pre-defined sparsity

In	a	FC	network,	most	weights	are	very	small	in	magnitude	after	training
Sourya	Dey �16



University	of	Southern	California

Performance of pre-defined sparsity

Starting	with	an	MLP	with	

only	20%	of	parameters	

compared	to	fully	connected	:	

Classification	accuracy	

reduction	on	test	data	is	<1%

Sourya	Dey �17



University	of	Southern	California

Computational Savings

Sourya	Dey �18

For	all	3	operations	–	FF,	BP,	UP	–	only	use	weights	which	are	present	

In-degree	summations	
for	each	node	in	FF

Out-degree	summations	
for	each	node	in	BP

Only	node	pairs	(j,k)	which	have	
weight	connecting	them	in	UP



University	of	Southern	California

Designing pre-defined sparse networks

A	pre-defined	sparse	connection	
pattern	is	a	hyperparameter	to	be	set	

prior	to	training	

How	can	it	be	set?

Sourya	Dey �19



University	of	Southern	California

Designing pre-defined sparse networks

A	pre-defined	sparse	connection	
pattern	is	a	hyperparameter	to	be	set	

prior	to	training	

How	can	it	be	set?

Sourya	Dey �19

We	experimented	on	several	datasets:	

➢MNIST	handwritten	digits	
➢ Reuters	RCV1	corpus	of	newswire	articles	
➢ TIMIT	speech	corpus	(only	MLP	portion)	
➢ CIFAR-10	and	-100	images	(CNN	+	MLP)	
➢Morse	Code	symbols	(described	later)

Pic	courtesy:	https://www.researchgate.net/
publication/
3454183_Hybrid_Neural_Document_Clustering_Usin
g_Guided_Self-Organization_and_Wordnet/figures?
lo=1

https://www.researchgate.net/publication/3454183_Hybrid_Neural_Document_Clustering_Using_Guided_Self-Organization_and_Wordnet/figures?lo=1
https://www.researchgate.net/publication/3454183_Hybrid_Neural_Document_Clustering_Using_Guided_Self-Organization_and_Wordnet/figures?lo=1
https://www.researchgate.net/publication/3454183_Hybrid_Neural_Document_Clustering_Using_Guided_Self-Organization_and_Wordnet/figures?lo=1
https://www.researchgate.net/publication/3454183_Hybrid_Neural_Document_Clustering_Using_Guided_Self-Organization_and_Wordnet/figures?lo=1
https://www.researchgate.net/publication/3454183_Hybrid_Neural_Document_Clustering_Using_Guided_Self-Organization_and_Wordnet/figures?lo=1


University	of	Southern	California

Dataset Redundancy
➢MNIST:	

➢Default:	784	features	(image	pixels)	
➢Principal	component	analysis	to	reduce	to	200	
=>	Less	redundancy	

➢ Reuters:	
➢Default:	Collect	2000	tokens	(word	snippets)	as	
features	from	each	article	

➢Can	be	reduced	to	400	=>	Less	redundancy	
➢TIMIT:		

➢Default:	Collect	39	MFCCs	as	features	
➢Decrease	by	3x	to	13	=>	Less	redundancy	
➢Increase	by	3x	to	117	=>	More	redundancy	

➢CIFAR:	
➢Default:	Pre-process	using	a	deep	9-layer	CNN	
➢Simplify	to	a	2-layer	CNN	=>	Less	redundancy

Most	datasets	have	too	many	
features	=>	Can	be	reduced

Sourya	Dey �20

Pic	courtesy:	https://tensorflow.rstudio.com/tensorflow/articles/tutorial_mnist_beginners.html

https://tensorflow.rstudio.com/tensorflow/articles/tutorial_mnist_beginners.html


University	of	Southern	California

Effect of redundancy on sparsity

MNIST	with	default	
784	features

MNIST	reduced	to	
200	features	

Wider	spread

Less	redundancy	=>	Less	

sparsification	possible

Sourya	Dey �21



University	of	Southern	California

Effect of 
redundancy 
on sparsity

Reducing	redundancy	leads	

to	performance	starting	to	

degrade	at	higher	densities

Sourya	Dey �22



University	of	Southern	California

Individual junction densities

Latter	junctions	(closer	to	the	output)	need	to	be	denser
Sourya	Dey �23



University	of	Southern	California

Individual 
junction 
densities

Each	curve	keeps	!2	fixed	and	
varies	!net	by	varying	!1	

For	the	same	!net	,	!2	>	!1	
improves	performance

Sourya	Dey �24

Similar	trends	observed	for	
deeper	networks,	with	few	
exceptions



University	of	Southern	California

‘Large sparse’ vs ‘small dense’ networks

A	sparser	network	with	more	nodes	will	outperform	a	

denser	network	with	less	nodes,	when	both	have	same	

number	of	trainable	parameters	(weights+biases)

…unless	density	of	the	larger	network	goes	lower	
than	a	critical	density	(problem	dependent)

Sourya	Dey �25



University	of	Southern	California

‘Large sparse’ vs ‘small dense’ networks

Networks	with	same	number	of	parameters	go	from	bad	
to	good	as	#nodes	in	hidden	layers	is	increased

Below	critical	density
Sourya	Dey �26



University	of	Southern	California

Regularization

Sourya	Dey �27

Regularized	cost

Original	unregularized	
cost	(like	cross-entropy)

Regularization	term



University	of	Southern	California

Regularization

Sourya	Dey �27

Regularized	cost

Original	unregularized	
cost	(like	cross-entropy)

Regularization	term

Pre-defined	sparse	networks	need	
smaller	λ	(as	determined	by	validation)

Pre-defined	sparsity	reduces	the	

overfitting	problem	stemming	from	

over-parametrization	in	big	networks

Overall	Density λ

100	% 1.1	x	10-4

40	% 5.5	x	10-5

11	% 0

Example	for	MNIST	2-junction	networks



University	of	Southern	California

Summary of pre-
defined sparsity – 
Trends and design 
guidelines

Sourya	Dey �28

Most	networks	can	be	significantly	
sparsified!

Exploits	redundancy	in	dataset

Later	junctions	need	more	density

‘Large	and	sparse’	networks	are	better	
than	‘small	and	dense’	networks

Alternative	to	regularization

...	these	tie	in	with	proposed	

research	on	model	search



University	of	Southern	California

Outline

Introduction	and	Background

Pre-Defined	Sparsity

Hardware	Architecture

Connection	Patterns

Dataset	Engineering

Model	Search

Achieved	
Research	

Contributions

Sourya	Dey �29



University	of	Southern	California

Hardware Architecture

We	built	a	customized	hardware	architecture	to	leverage	pre-defined	sparsity	

Key	highlights:	

➢ Edge-based	
➢ Customizable	amount	of	parallelism	
➢ Clash	free	memory	accesses	
➢ Pipelined	processing

Sourya	Dey �30



University	of	Southern	California

Degree of parallelism z

zi	=	#edges	(weights)	processed	in	parallel	in	junction	i

Slow	
Training

Hardware	
Intensivez

FlexibilityExample	zi	=	3

#clock cycles (!") to process junction i  =  
#weights  ""

#"

Computational	complexity	depends	only	on	zi

Decouple	hardware	required	from	network	complexity

Sourya	Dey �31



University	of	Southern	California

Memory organization and clash freedom

Left	side	nodes	are	accessed	in	
arbitrary	order	due	to	interleaving

zi	memories	for	storing	each	variable	–	a,	h’,	δ,	W,	b	–	in	each	junction

Example	zi	=	3

Weights	are	accessed	one	row	at	a	time	(natural	order)

Must	access	each	memory	no	more	than	once	per	

clock	cycle,	otherwise	clash	=>	processing	stall
Sourya	Dey �32



University	of	Southern	California

Memory organization 
of a single junction

➢ zi	=	4	weights	accessed	per	cycle	
➢ Must	access	all	4	left	memories	

exactly	once	per	cycle	for	clash-
freedom	

➢ After	Di	=	3	cycles,	all	left	nodes	are	

accessed	once	=>	1	sweep	
➢ Repeat	for	diout	=	2	sweeps	to	access	

all	weights	

➢ At	most	2	right	nodes	accessed	per	
cycle	=>	At	least	2	right	memories	
required	for	clash-freedomSourya	Dey �33



University	of	Southern	California

Parallel and Pipelined processing

Operational	parallelism:	FF,	

BP,	UP	simultaneously	

inside	a	junction	

Junction	pipelining:	Each	

operates	on	different	

inputs	across	junctions	

Faster	training	@	more	

hardware	and	storage	cost

Sourya	Dey �34



University	of	Southern	California

Clash-free memory access patterns

Ni-1	=	12	left	side	nodes	arranged	in	zi	=	4	memories	
Fix	a	seed	vector	=	(1,0,2,2)	for	starting	cycle	0	locations	
For	consecutive	cycles,	add	1	modulo	memory	depth

0

4

8

1

5

9

2

6

10

3

7

11

Mem	0 Mem	1 Mem	2 Mem	3

Loc	0

Loc	1

Loc	2

Left	node	
number

Storage:	zi-length	
seed	vector	

Computation:	zi	

incrementers	

Can	have	richer	

classes	of	memory	

access	patterns	@	

more	hardware	cost

Sourya	Dey �35



University	of	Southern	California

Types of pre-defined 
sparsity

Randomly	
distribute	

connections	given	
overall	density

Structure	the	
network	to	have	
constant	in-	and	
out-degree	for	
each	node

Fix	z	and	structure	
the	connections	for	
hardware-friendly	
clash-free	memory	

accesses

Random	→	Structured	→	Clash-free	

progressively	restricts	the	network

Sourya	Dey �36



University	of	Southern	California

Performance 
Comparison

:

Hardware-friendly	simple	

clash-free	patterns	can	

improve	performance

Random	sparsity	can	perform	badly

Sourya	Dey �37



University	of	Southern	California

FPGA 
Implementation

Initial	hardware	prototype	of	
pre-defined	sparse	2-junction	
network	training	on	MNIST	

➢	Nodes	=	1120	

➢	Weights	=	5120	

➢	Overall	density	=	7.5%	

➢	Total	parallelism	=	160		

Xilinx	Artix-7	FPGA	on	Digilent	
Nexys4	board

Sourya	Dey �38



University	of	Southern	California

Some Findings and Considerations

Sourya	Dey �39

Dynamic	range	is	reduced	
due	to	pre-defined	sparsity

Sigmoid	activation	
works	better	in	
hardware	than	ReLU

12-bit	fixed	point	config:	
(sign,	integer,	fractional)	=	(1,3,8)

a1	histograms



University	of	Southern	California

Ongoing / Future Work in H/W Implementation

This	dissertation:	

➢	More	pipelining	to	improve	speed	(current	clock	frequency	=	15	MHz)	

Other	members	of	our	team:		

➢	Better	memory	interfacing	and	management	protocols	

➢	Leveraging	cloud	FPGA	resources	to	support	bigger	networks

Sourya	Dey �40



University	of	Southern	California

Outline

Introduction	and	Background

Pre-Defined	Sparsity

Hardware	Architecture

Connection	Patterns

Dataset	Engineering

Model	Search

Achieved	
Research	

Contributions

Sourya	Dey �41



University	of	Southern	California

Biadjacency Matrices

Sourya	Dey �42



University	of	Southern	California

Windowed connection patterns

Sourya	Dey �43

For	best	results,	nodes	should	

get	information	from	all	

portions	of	adjacent	layers	

=>	Define	windows



University	of	Southern	California

Windowed connection patterns

Sourya	Dey �43

For	best	results,	nodes	should	

get	information	from	all	

portions	of	adjacent	layers	

=>	Define	windows



University	of	Southern	California

Windowed Biadjacency Matrices and Scatter

Sourya	Dey �44



University	of	Southern	California

Scatter – Performance prediction before training 

Sourya	Dey �45

Scatter	can	help	in	filtering	out	bad	networks	before	training	…	(work	in	progress)

Not	explicitly	planning	
connections	performs	
the	best

...	ties	in	with	

proposed	

research	on	

model	search



University	of	Southern	California

Outline

Introduction	and	Background

Pre-Defined	Sparsity

Hardware	Architecture

Connection	Patterns

Dataset	Engineering

Model	Search

Achieved	
Research	

Contributions

Sourya	Dey �46



University	of	Southern	California

Data, data, everywhere, 
Not quality enough to use

Real	world	data	has	challenges:	
➢	Too	few	samples	

➢	Incorrect	labeling	

➢	Missing	entries

Sourya	Dey �47

13.2 0.05 1200

10.9 A

0.78 B+ 1400

11.4 1100

Synthetic	data	is	generated	using	computer	algorithms	
➢ Very	large	quantities	can	be	generated	
➢Mimic	real-world	data	as	desired	
➢ Classification	difficulty	tweaking



University	of	Southern	California

Morse Code 
Datasets

Sourya	Dey �50

Morse	Code	is	a	system	of	

communication	where	

letters,	numbers	and	

symbols	are	encoded	

using	dots	and	dashes

Example:	

+				·	-	·	-	·



University	of	Southern	California

Variations and Difficulty Scaling

➢	More	noise	

➢	Leading	and	trailing	spaces	

➢	Confusing	dashes	with	dots	and	spaces	

➢	Dilating	frame	to	size	256	

➢	Increasing	#samples	in	dataset

Sourya	Dey �51



University	of	Southern	California

Neural network performance

Sourya	Dey �52

Tunable	dataset	difficulty	leads	to	a	variety	of	benchmarks



University	of	Southern	California

Metrics to characterize dataset difficulty

Sourya	Dey �53



University	of	Southern	California

Metrics to characterize dataset difficulty

Sourya	Dey �53

Probability	of	the	
mth	class	occurring

Gaussian	Q-function

Minimum	distance	
between	centroids	of	mth	
class	and	any	other	class

Distance	between	centroids	
of	mth	and	jth	classes	

#features

#classes

Average	variance	across	
all	features	in	mth	class



University	of	Southern	California

Goodness of the Metrics

Sourya	Dey �54

Pearson’s	correlation	coefficient	between	
metric	and	test	set	classification	accuracy	of	
Morse	code	datasets	of	varying	difficulty	
(negative	because	metrics	indicate	difficulty)

Metrics	can	be	used	to	understand	the	

inherent	difficulty	of	the	classification	

problem	on	a	dataset	before	applying	

any	learning	algorithm



University	of	Southern	California

Outline

Introduction	and	Background

Pre-Defined	Sparsity

Hardware	Architecture

Connection	Patterns

Dataset	Engineering

Model	Search

Sourya	Dey �55

Proposed	
Research



University	of	Southern	California

Introduction to Model Search?

➢	How	do	they	work?	
➢	Are	so	many	layers	and	neurons	really	needed?	

➢	Which	parts	of	a	network	are	the	most	important?	
➢	How	should	different	layers	be	connected?	

➢	What	are	good	hyperparameter	values?

Sourya	Dey �56

Neural	networks	are	largely	black	boxes



University	of	Southern	California

Model	Search

Architecture	
Search

Evolutionary	
Algorithms

Focus	on	small	pieces	of	the	
network,	mutate	them	to	get	

better	pieces,	combine

Reinforcement	
Learning

Use	Q-learning	or	policy	
gradient	methods	to	select	new	

networks	to	try	out

Other	
Approaches

Fancy	early	stopping,	predicting	
performance	before	training

Hyperparameter	
Optimization

Search
Algorithms	to	decide	good	

initial	values	of	
hyperparameters

Scheduling
Dynamically	adjust	values	of	
important	hyperparameters	as	

network	learns

Types of Model 
Search

Sourya	Dey �57

(Network	structure,	
layers,	connection	
patterns,	…)

(Learning	rate,	
regularization,	…)



University	of	Southern	California

Model	Search

Architecture	
Search

Evolutionary	
Algorithms

Miikkulainen	2017	–	Evolving	DNNs	

Liu	2018	–	Hierarchical	
Representations	

Real	2018	–	Regularized	Evolution

Reinforcement	
Learning

Zoph	2016	–	NAS	

Baker	2017	–	Designing	NN	
Architectures	using	RL	

Pham	2018	–	ENAS

Other	
Approaches

Liu	2017	–	Progressive	NAS	

Baker	2018	–	Accelerating	NAS	
using	Performance	Prediction	

Liu	2018	–	DARTS

Hyperparameter	
Optimization

Search

Bergstra	2012	–	Random	search	

Bergstra	2013	–	Making	a	Science	
of	Model	Search	

Snoek	2012	–	Bayesian	optimization

Scheduling

Smith	2017	–	Cyclical	learning	rates	

Loschilov	2017	–	SGDR	

Goyal	2017	–	Accurate,	large	
minibatch	SGD

Related Work

Sourya	Dey �58

Total	‘GPU	days’	
for	finding	a	good	

architecture	can	

be	>100



University	of	Southern	California

Our Proposed 
Research

Sourya	Dey

➢	Architecture	search	with	focus	on	low	
complexity	networks	
➢Extend	complexity	reduction	methods	like	pre-
defined	sparsity	to	other	networks	beyond	
MLP	

➢Lower	complexity	networks	can	train	faster	
(sparse	libraries)	

➢Democratize	architecture	search	to	entities	
without	enormous	finances

➢	Deeper	understanding	of	neural	networks	
➢Build	on	trends	and	guidelines	for	sparsity	
➢Which	parts	of	a	network	are	important	–	
leverage	evolutionary	algorithms	

➢Build	on	scatter-like	methods	to	predict	
performance	prior	to	training	

➢More	informed	early	stopping	–	software	and	
hardware	monitors

GOAL:	Automate	the	process	

of	designing	well-

performing,	low	complexity	

sparse	neural	networks	for	

various	applications	

�59



University	of	Southern	California

Summary of 
Contributions

• Proposing	and	analyzing	pre-defined	
sparsity	to	reduce	NN	complexity	

• Hardware	architecture	to	leverage	pre-
defined	sparsity	

• Analyzing	connection	patterns	and	
performance	predicting	measures	

• Family	of	synthetic	datasets	on	Morse	
code	with	tunable	difficulty

Achieved:

• Better	pipelining	to	improve	hardware	
architecture	

• Architecture	search	and	understanding	
of	low	complexity	neural	networks	

• [Time	and	resources	permitting]	
Hyperparameter	search	tuned	to	low	
complexity	neural	networks

Proposed:

Sourya	Dey �60



University	of	Southern	California

Thank you!

Sourya	Dey �61


