

Exploring Complexity Reduction for Learning in Deep Neural Networks

Sourya Dey

PhD Qualifying Exam April 23rd, 2019

Outline

Introduction and Background

Hardware Architecture

Connection Patterns

Achieved Research Contributions

Dataset Engineering

Model Search

Proposed Research

Outline

Introduction and Background

Pre-Defined Sparsity

Hardware Architecture

Connection Patterns

Dataset Engineering

Model Search

Introduction

Neural networks (NNs) are key machine learning technologies

- ➤ Artificial intelligence
- ➤ Self-driving cars
- > Speech recognition
- ≻ Face ID
- \succ and more smart stuff ...

Overview

Modern neural networks suffer from parameter explosion

Training can take weeks on CPU Cloud GPU resources are expensive

Our research reduces complexity of neural networks with minimal performance degradation

Summary of Contributions

Achieved:

- **Pre-defined sparsity** to reduce complexity of neural networks
- Hardware architecture to leverage predefined sparsity
- Analyzing **connection patterns** and performance predicting measures
- Family of **synthetic datasets** on Morse code with tunable difficulty

Proposed:

- Better **pipelining** to improve hardware architecture
- Architecture search of low complexity neural networks

Multilayer Perceptron (MLP) Notation Layer 1 Junction 1 $N_1 = 3$ Junction 2 $d_1^{\text{out}} = 3$ 3 -3 $d_2^{\text{in}} = 3$ -3 Layer 0 Layer L = 2 $N_0 = 4$ $N_2 = 2$ Fully connected (FC) eights $W_1 = \begin{bmatrix} -1 & -3 & 0 & 1 \\ 2 & -2 & -1 & 0 \\ -3 & 0 & 0 & 2 \end{bmatrix}$ Biases $\begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$ $W_2 = \begin{bmatrix} 2 & -2 & 1 \\ 3 & -2 & -3 \end{bmatrix}$ $b_2 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ Weights Trainable **Parameters**

Neural Networks Operations for Classification

Training (training data)

- > Feedforward (FF)
- > Backpropagation (BP)
- > Update parameters (UP)

Inference (validation and test data)

> Feedforward (FF) only

Test data performance used as metric for goodness of network

Sourya Dey

Update (UP)

The Complexity Conundrum

Storage Complexity -Dominated by weights A typical fully connected MLP for classifying MNIST handwritten digits has ~10⁵ weights

Computational Complexity -Also dominated by weights

> All the weights are used in all 3 operations

$$\begin{array}{ll} {\rm FF} & \displaystyle \sum_{\forall i,j} W_{ij} a_j \\ \\ {\rm BP} & \displaystyle \sum_{\forall i,j} W_{ij} \delta_i \\ \\ {\rm UP} & \displaystyle W_{ij} - \eta \nabla_{W_{ij}} C \quad \forall i,j \end{array}$$

Existing methods to reduce Complexity

Algorithms

- Gong 2014 Vector quantization
- Chen 2015 HashedNets
- Sindhwani 2015 Structured transforms
- Srinivas 2017 –
 Special regularizers
- Aghasi 2017 Nettrim

ASIC Implementations

- Chen 2014 Diannao
- Han 2016 Efficient Inference Engine
- Reagen 2016 Minerva
- Zhang 2016 Cambricon-X
- Chen 2017 Eyeriss

FPGA Implementations

- Courbariaux 2016 -Binarized nets
- Albericio 2016 Cnvlutin
- Suda 2016 Open-CL based
- Ma 2018 ALAMO

Training Focused

- *Girones 2005* Pipelined on-line BP
- Gomperts 2011 Parametrized FPGAbased NNs
- Wang 2017 DLAU

These reduce parameters during inference, but training complexity remains intensive

These focus on training, but do not delete parameters

Outline

Our Work: Pre-defined Sparsity

Pre-define a sparse connection pattern prior to training

Use this sparse network for both training and inference

Reduced training and inference complexity

Motivation behind pre-defined sparsity

In a FC network, most weights are very small in magnitude after training

Sourya Dey

Performance of pre-defined sparsity

Starting with an MLP with only 20% of parameters compared to fully connected : Classification accuracy reduction on test data is <1%

Computational Savings

$$s_i^{(j)} = \sum_{f=1}^{d_i^{\text{in}}} W_i^{(j,k_f)} a_{i-1}^{(k_f)} + b_i^{(j)}$$

In-degree summations for each node in FF

 $\delta_{i}^{(j)} = h'_{i}^{(j)} \left(\sum_{f=1}^{d_{i}^{out}} W_{i+1}^{(k_{f},j)} \delta_{i+1}^{(k_{f})} \right) \qquad \text{Out-degree summations} \\ \text{for each node in BP}$ $W_i^{(j,k)} \leftarrow W_i^{(j,k)} - \eta a_{i-1}^{(k)} \delta_i^{(j)}$

Only node pairs (j,k) which have weight connecting them in UP

For all 3 operations – FF, BP, UP – only use weights which are present

Designing pre-defined sparse networks

A pre-defined sparse connection pattern is a hyperparameter to be set prior to training

How can it be set?

Designing pre-defined sparse networks

A pre-defined sparse connection pattern is a hyperparameter to be set prior to training

How can it be set?

opic	Description	Distribution
:15	Performance	149,359
:151	Accounts/earnings	81,201
:152	Comment/forecasts	72,910
cat	Corporate/industrial	372,099
cat	Economics	116,207
icat	Government/social	232,032
n14	Commodity markets	84,085
ncat	Markets	197,813

We experimented on several datasets:

- > MNIST handwritten digits
- > Reuters RCV1 corpus of newswire articles
- > TIMIT speech corpus (only MLP portion)
- CIFAR-10 and -100 images (CNN + MLP)
- Morse Code symbols (described later)

Pic courtesy: <u>https://www.researchgate.net/</u>				
publication/				
3454183 Hybrid Neural Document Clustering Usin				
g Guided Self-Organization and Wordnet/figures?				
lo=1				

Dataset Redundancy

≻ MNIST:

- ≻Default: 784 features (image pixels)
- Principal component analysis to reduce to 200
 => Less redundancy

≻ Reuters:

Default: Collect 2000 tokens (word snippets) as features from each article

≻Can be reduced to 400 => Less redundancy

≻TIMIT:

➤ Default: Collect 39 MFCCs as features

Decrease by 3x to 13 => Less redundancy

Increase by 3x to 117 => More redundancy

> CIFAR:

Default: Pre-process using a deep 9-layer CNN
 Simplify to a 2-layer CNN => Less redundancy
 Sourya Dey

Most datasets have too many features => Can be reduced

Pic courtesy: https://tensorflow.rstudio.com/tensorflow/articles/tutorial_mnist_beginners.html

Effect of redundancy on sparsity

MNIST with default 784 features

> Less redundancy => Less sparsification possible

MNIST reduced to 200 features *Wider spread*

Effect of redundancy on sparsity

Reducing redundancy leads to performance starting to degrade at higher densities

Individual junction densities

Latter junctions (closer to the output) need to be denser

Individual junction densities

Each curve keeps ρ_2 fixed and varies $\rho_{\rm net}$ by varying ρ_1

For the same ρ_{net} , $\rho_2 > \rho_1$ *improves performance*

Similar trends observed for deeper networks, with few exceptions

40

ρ₂ (%)

100 20

50

'Large sparse' vs 'small dense' networks

A sparser network with more nodes will outperform a denser network with less nodes, when both have same number of trainable parameters (weights+biases)

> ...unless density of the larger network goes lower than a critical density (problem dependent)

'Large sparse' vs 'small dense' networks

Networks with same number of parameters go from bad to good as #nodes in hidden layers is increased

Regularization

$$C(\boldsymbol{w}) = C_0(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2$$

Regularized cost
Original unregularized
cost (like cross-entropy)
Regularization term

Regularization

$$C(\boldsymbol{w}) = C_0(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2$$

Regularized cost
Original unregularized
cost (like cross-entropy)
Regularization term

Pre-defined sparse networks need smaller λ (as determined by validation)

Overall Density	λ
100 %	1.1 x 10-4
40 %	5.5 x 10 ⁻⁵
11 %	0

Example for MNIST 2-junction networks

Pre-defined sparsity reduces the overfitting problem stemming from over-parametrization in big networks

University of Southern California

Sourya Dey

Summary of predefined sparsity – Trends and design guidelines

Most networks can be significantly sparsified!

Exploits redundancy in dataset

Later junctions need more density

'Large and sparse' networks are better than 'small and dense' networks

Alternative to regularization

... these tie in with proposed research on model search

Outline

Introduction and Background

Pre-Defined Sparsity

Hardware Architecture

Achieved Research Contributions

Connection Patterns

Dataset Engineering

Model Search

Hardware Architecture

We built a customized hardware architecture to leverage pre-defined sparsity

Key highlights:

- ➤ Edge-based
- Customizable amount of parallelism
- > Clash free memory accesses
- > Pipelined processing

Degree of parallelism z

Edge Interleaver

Example $z_i = 3$

z_i = #edges (weights) processed in parallel in junction i

#weights #clock cycles (C_i) to process junction i =

Computational complexity depends only on z_i

Decouple hardware required from network complexity

 W_i

 Z_i

Memory organization and clash freedom

 z_i memories for storing each variable – a, h', δ , W, b – in each junction

Must access each memory no more than once per clock cycle, otherwise clash => processing stall

Example $z_i = 3$

Sweep 0

Sweep 1

University of Southern California

33

= 2

3

5

Memory organization of a single junction

- $> z_i = 4$ weights accessed per cycle
- \succ Must access all 4 left memories exactly once per cycle for clashfreedom
- > After D_i = 3 cycles, all left nodes are accessed once => 1 sweep
- \rightarrow Repeat for $d_i^{out} = 2$ sweeps to access all weights
- At most 2 right nodes accessed per cycle => At least 2 right memories required for clash-freedom

Parallel and Pipelined processing

Operational parallelism: FF, BP, UP simultaneously inside a junction

Junction pipelining: Each operates on different inputs across junctions

Faster training @ more hardware and storage cost

Clash-free memory access patterns

 $N_{i-1} = 12$ left side nodes arranged in $z_i = 4$ memories Fix a seed vector = (1,0,2,2) for starting cycle 0 locations For consecutive cycles, add 1 modulo memory depth Storage: z_i-length seed vector Computation: z_i incrementers

Can have richer classes of memory access patterns @ more hardware cost

Types of pre-defined sparsity

Random \rightarrow Structured \rightarrow Clash-free progressively restricts the network

Randomly distribute connections given overall density

Structure the network to have constant in- and out-degree for each node

Fix z and structure the connections for hardware-friendly clash-free memory accesses

Performance Comparison

Hardware-friendly simple clash-free patterns can improve performance

Random sparsity can perform badly

d^{out}	0	7	Test Accuracy Perfor	mance		
$\mathbf{a}_{\mathrm{net}}$	$\rho_{\rm net}$ /0	~net	Clash-free	Structured	Random	
MNIST: $N_{net} = (800, 100, 100, 100, 10)$, FC test accuracy = 98 ± 0.1						
(80, 80, 80, 10)	80.2	(200, 25, 25, 4)	97.9 ± 0.2	97.9 ± 0.2	97.8 ± 0.2	
(60, 60, 60, 10)	60.4	(200, 25, 25, 4)	97.6 ± 0.1	97.8 ± 0.1	97.6 ± 0.2	
(40, 40, 40, 10)	40.6	(200, 25, 25, 5)	97.5 ± 0.1	97.7	97.6 ± 0.1	
(20, 20, 20, 10)	20.8	(200, 25, 25, 10)	97.2 ± 0.2	97.2 ± 0.1	97.1 ± 0.1	
(10, 10, 10, 10)	10.9	(200, 25, 25, 25)	96.7 ± 0.1	96.8 ± 0.2	96.7 ± 0.2	
(5, 10, 10, 10)	6.9	(100, 25, 25, 25)	96.3 ± 0.1	96.3 ± 0.1	96.2 ± 0.1	
(2, 5, 5, 10)	3.6	(80, 25, 25, 50)	95 ± 0.2	95.1 ± 0.1	95 ± 0.3	
(1, 2, 2, 10)	2.2	(80, 20, 20, 100)	93.3 ± 0.3	93.1 ± 0.5	92 ± 0.3	
Reuters: $N_{net} = (2000, 50, 50)$, FC test accuracy = 89.6 ± 0.1						
(25, 25)	50	(1000, 25)	89.4 ± 0.1	89.3	89.4	
(10, 10)	20	(400, 10)	87 ± 0.1	86.7 ± 0.1	86.5 ± 0.1	
(5,5)	10	(200, 5)	78.5 ± 0.5	78.2 ± 0.7	77.5 ± 0.6	
(2, 2)	4	(80, 2)	53.3 ± 1.8	51.2 ± 1.7	46.8 ± 2.9	
(1, 1)	2	(40, 1)	28.4 ± 2.4	28.7 ± 2.3	28 ± 1.9	
TIMIT: $N_{net} = (39, 390, 39)$, FC test accuracy = 43.2 ± 0.2						
(270, 27)	69.2		43 ± 0.1	43	43 ± 0.1	
(180, 18)	46.2		42.7 ± 0.1	42.8 ± 0.1	42.9 ± 0.1	
(90, 9)	23.1	(13, 13)	42.1 ± 0.1	42.5 ± 0.1	42.4 ± 0.1	
(60, 6)	15.4	-	41.5 ± 0.1	41.8 ± 0.2	41.9 ± 0.1	
(30, 3)	7.7		40.5 ± 0.2	40.1 ± 0.2	39.4 ± 0.8	
CIFAR-100 : $N_{\text{net}} = (4000, 500, 100)$, FC top-5 test accuracy = 87.1 ± 0.6						
(100, 100)	22	(2000, 250)	87.5 ± 0.2	87.7 ± 0.2	87.4 ± 0.3	
(29, 29)	6.4	(2000, 200)	86.8 ± 0.3	87.2 ± 0.5	87.1 ± 0.2	
(12, 12)	2.6	(400, 50)	86.3 ± 0.2	86.5 ± 0.4	86.6 ± 0.4	
(5,5)	1.1	(400, 50)	85.3 ± 0.5	85.5 ± 0.5	85.7 ± 0.3	
(2, 2)	0.4	(80, 10)	84.1 ± 0.5	84.3 ± 0.3	83.8 ± 0.3	
(1,1)	0.2	(00, 10)	83 ± 0.5	83.3 ± 0.4	81.7 ± 0.7	

Sourya Dey

FPGA Implementation

Initial hardware prototype of pre-defined sparse 2-junction network training on MNIST

- ≻ Nodes = 1120
- \succ Weights = 5120
- > Overall density = 7.5%
- ➤ Total parallelism = 160

Xilinx Artix-7 FPGA on Digilent Nexys4 board

Some Findings and Considerations

12-bit fixed point config: (sign, integer, fractional) = (1,3,8) Sigmoid activation works better in hardware than ReLU

Dynamic range is reduced due to pre-defined sparsity

Ongoing / Future Work in H/W Implementation

This dissertation:

> More pipelining to improve speed (current clock frequency = 15 MHz)

Other members of our team:

- > Better memory interfacing and management protocols
- > Leveraging cloud FPGA resources to support bigger networks

Outline

Introduction and Background

Pre-Defined Sparsity

Hardware Architecture

Connection Patterns

Achieved Research Contributions

Dataset Engineering

Model Search

Biadjacency Matrices

Windowed connection patterns

For best results, nodes should get information from all portions of adjacent layers => Define windows

Windowed connection patterns

For best results, nodes should get information from all portions of adjacent layers => Define windows

Windowed Biadjacency Matrices and Scatter

Scatter – Performance prediction before training

Scatter can help in filtering out bad networks before training ... (work in progress)

Outline

Introduction and Background

Data, data, everywhere, Not quality enough to use

Real world data has challenges:

- ≻ Too few samples
- > Incorrect labeling
- \succ Missing entries

Synthetic data is generated using computer algorithms
➢ Very large quantities can be generated
➢ Mimic real-world data as desired
➢ Classification difficulty tweaking

communication where letters, numbers and

symbols are encoded using dots and dashes

Morse Code

Morse Code is a system of

Datasets

Example:

 $+ \cdot - \cdot - \cdot$

Variations and Difficulty Scaling

- > More noise
- ➤ Leading and trailing spaces
- > Confusing dashes with dots and spaces
- > Dilating frame to size 256
- Increasing #samples in dataset \

Neural network performance

Tunable dataset difficulty leads to a variety of benchmarks

Sourya Dey

Metrics to characterize dataset difficulty

$$V_{\text{lower}} = \sum_{m=1}^{N_L} P(m) Q\left(\sqrt{\frac{d_{\min}(m)^2}{4\sigma_m^2}}\right)$$
$$V_{\text{upper}} = \sum_{m=1}^{N_L} P(m) \sum_{\substack{j=1\\j\neq m}}^{N_L} Q\left(\sqrt{\frac{d(m,j)^2}{4\sigma_m^2}}\right)$$
$$V_{\text{dist}} = \frac{\sum_{m=1}^{N_L} \frac{\sigma_m}{d_{\min}(m)}}{N_L}$$
$$\overline{V_{\text{thresh}}} = \sum_{m=1}^{N_L} \sum_{\substack{j=1\\j\neq m}}^{N_L} \mathbb{I}\left(\frac{\|c_m - c_j\|_1}{N_0} < 0.05\right)$$

Metrics to characterize dataset difficulty

Goodness of the Metrics

Metric	r	
$V_{\rm lower}$	-0.59	
$V_{ m upper}$	-0.64	
$V_{\rm dist}$	-0.63	
$V_{\rm thresh}$	-0.64	

Pearson's correlation coefficient between metric and test set classification accuracy of Morse code datasets of varying difficulty (negative because metrics indicate difficulty)

Metrics can be used to understand the inherent difficulty of the classification problem on a dataset before applying any learning algorithm

Outline

Introduction and Background

Pre-Defined Sparsity

Hardware Architecture

Connection Patterns

Dataset Engineering

Model Search

Proposed Research

Introduction to Model Search?

Neural networks are largely black boxes

- > How do they work?
- > Are so many layers and neurons really needed?
- > Which parts of a network are the most important?
- > How should different layers be connected?
- > What are good hyperparameter values?

Our Proposed Research

GOAL: Automate the process of designing wellperforming, low complexity sparse neural networks for various applications

Sourva Dev

- Architecture search with focus on low complexity networks
 - Extend complexity reduction methods like predefined sparsity to other networks beyond MLP
 - Lower complexity networks can train faster (sparse libraries)
 - Democratize architecture search to entities without enormous finances
- Deeper understanding of neural networks
 - ≻Build on trends and guidelines for sparsity
 - ➤Which parts of a network are important leverage evolutionary algorithms
 - ➤Build on scatter-like methods to predict performance prior to training
 - More informed early stopping software and hardware monitors

Summary of Contributions

Achieved:

Proposed:

- Proposing and analyzing pre-defined sparsity to reduce NN complexity
- Hardware architecture to leverage predefined sparsity
- Analyzing **connection patterns** and performance predicting measures
- Family of **synthetic datasets** on Morse code with tunable difficulty

- Better **pipelining** to improve hardware architecture
- Architecture search and understanding of low complexity neural networks
- [*Time and resources permitting*] Hyperparameter search tuned to low complexity neural networks

Thank you!

