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Introduction

Neural networks (NNs) are key
machine learning technologies

> Artificial intelligence
> Self-driving cars

> Speech recognition
> Face ID

> and more smart stuff ...
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Overview

Modern neural networks suffer
from parameter explosion

Training can take weeks on CPU

Cloud GPU resources are expensive

Our research reduces complexity
of neural networks with minimal
performance degradation

Sourya Dey University of Southern California
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Summary of

Contributions

Sourya Dey

University of Southern California

Pre-defined sparsity to reduce
complexity of neural networks
Hardware architecture to leverage pre-
defined sparsity

Analyzing connection patterns and
performance predicting measures

Family of synthetic datasets on Morse
code with tunable difficulty

Better pipelining to improve hardware
architecture

Architecture search of low complexity
neural networks



Notation Multilayer Perceptron (MLP)

Junction 2

Layer L =2
Ny =

Trainable Weights B B
2 2 1 3
Parameters Wi=|2 -2 -1 0| b=|[-1 W, = 5 9 _3g b, = ,
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Notation Multilayer Perceptron (MLP)

Junction 2
dy™ = 3+
i =
Layer O
Ny =4 Layer L =2
Ny =

Fully connected (FC)

Trainable Weights B B
2 2 1 3
Parameters Wi=|2 -2 -1 0| b=|[-1 W, = 5 9 _3g b, = ,
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Neural Networks Operations for Classification

Training (training data)
> Feedforward (FF)
> Backpropagation (BP)

> Update parameters (UP)

Inference (validation and test data)

> Feedforward (FF) only

Test data performance used as
metric for goodness of network
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Feedforward (FF)
Previous layer activation

v .
/ (Starts from input features a,)

Linear output S; = ‘/‘/ 1A 1 —|— bz Non-linear activation function
| » ReLU / Sigmoid for hidden layers
Activation output a”l p— h (SZ ) Softmax for output layer
(a) Activation functions (b) Activation function derivatives
aa . 4 o(x) L0 i)
.. .. h/ _ ? —— RelLU(x) —— RelU'(x)
Activation derivative i — . -

887;

2 0.50

0 0.00

-4 -3 -2 -1 0 1 2 3 a4 -4 -3 2 -1 0 1 2 3
X X
9
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Backpropagation (BP)

Ground truth labels

v Typically one-hot for classification
o
0

Nr, |
_ Z ) In a%)
1=1 ’
Delta (output layer) 5L =aj — Y O

(Wii10i41) O\fié

Cross-entropy Cost C

Delta (intermediate layers) 52

Hadamard product
(element-wise multiplication)



Update (UP)

< Training sample number

Learning Rate

Hyperparameter <\77

/ " \

Batch size “
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The Complexity Conundrum

>Storage Complexity - A typical fully connected MLP for classifying
Dominated by weights MNIST handwritten digits has ~10> weights
FF Z Wz’j a;
> Computational Complexity - Vi,j
Also dominated by weights
gp > Wijd;
Vi,j

All the weights are used
in all 3 operations UP Wij — T]vWij C Vi, J
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Existing methods to reduce Complexity

Algorithms ASIC Implementations FPGA Implementations Training Focused

e Gong 2014 — Vector e Chen 2014 — Diannao e Courbariaux 2016 - e Girones 2005 —
guantization e Han 2016 — Efficient Binarized nets Pipelined on-line BP
e Chen 2015 - Inference Engine e Albericio 2016 — e Gomperts 2011 —
HashedNets e Reagen 2016 — Cnvlutin Parametrized FPGA-
e Sindhwani 2015 — Minerva e Suda 2016 — Open-CL based NNs
Structured transforms e Zhang 2016 — based e Wang 2017 — DLAU
® Srinivas 2017 — Cambricon-X e Ma 2018 — ALAMO
Special regularizers e Chen 2017 — Eyeriss
e Aghasi 2017 — Net-
trim
N v J
These reduce parameters during inference, — «owvn —-— These focus on training, but
but training complexity remains intensive ' do not delete parameters

Sourya Dey University of Southern California - — 13
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Structured Constraints:
Fixed in-, out-degrees
for every node

Our Work:
Pre-defined Sparsity

Pre-define a sparse connection
pattern prior to training

Use this sparse network for both

. : 4 x 2
training and inference XL 50

4 x4
Reduced training and 33%

inference complexity

Junction v
Densities Overall Density

Sourya Dey University of Southern California 15




Motivation behind pre-defined sparsity
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Performance of pre-defined sparsity
%8 —ok— *———@:

< 97
:>:96-
g 95 1
8 94 - . o .
<05 MNIST Starting with an MLP with
2 92 only 20% of parameters
91 -
‘ compared to fully connected :

Classification accuracy

(00}
O

9
> 881 i )
§87 reduction on test data is <1%
< 86 Reuters
()
F g5
0 20 40 60 80 100

Overall Density (%)
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Computational Savings

d:»
ng) — Z W(J kf) (kf) b(]) In-degree summations

for each node in FF

f=1
dqut
(j) _ /(j) (kf >J) (kf) Out-degree summations
513 =h () 2 : WZ-I-l 52+1 for each node in BP
f=1
(j,k) (jvk) (k) (J) Only node pairs (j,k) which have
Wi < W’I, —nNa; 4 52 weight connecting them in UP

For all 3 operations — FF, BP, UP — only use weights which are present

Sourya Dey University of Southern California 18



Designing pre-defined sparse networks

A pre-defined sparse connection
pattern is a hyperparameter to be set
prior to training

How can it be set?

Sourya Dey University of Southern California
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Designing pre-defined sparse networks

A pre-defined sparse connection We experimented on several datasets:
pattern is a hyperparameter to be set

: . > MNIST handwritten digits
prior to tra/nlng

> Reuters RCV1 corpus of newswire articles
> TIMIT speech corpus (only MLP portion)
> CIFAR-10 and -100 images (CNN + MLP)

How can it be set?
> Morse Code symbols (described later)

Topic Description Distribution
c15 Performance 149,359
c151 Accounts/earnings 81,201
c152 Comment/forecasts 72,910
ccat Corporate/industrial 372,099
Pic courtesy: https://www.researchgate.net/ ocat Economics 116,207
publication/ gcat Government/social 232,032
3454183 _Hybrid_Neural_Document_Clustering_Usin mi4 Commodity markets 84,085
izozGlmded Self-Organization_and_Wordnet/figures? - Wiailiats 197,813

Sourya Dey University of Southern California 19


https://www.researchgate.net/publication/3454183_Hybrid_Neural_Document_Clustering_Using_Guided_Self-Organization_and_Wordnet/figures?lo=1
https://www.researchgate.net/publication/3454183_Hybrid_Neural_Document_Clustering_Using_Guided_Self-Organization_and_Wordnet/figures?lo=1
https://www.researchgate.net/publication/3454183_Hybrid_Neural_Document_Clustering_Using_Guided_Self-Organization_and_Wordnet/figures?lo=1
https://www.researchgate.net/publication/3454183_Hybrid_Neural_Document_Clustering_Using_Guided_Self-Organization_and_Wordnet/figures?lo=1
https://www.researchgate.net/publication/3454183_Hybrid_Neural_Document_Clustering_Using_Guided_Self-Organization_and_Wordnet/figures?lo=1

Dataset Redundancy

Most datasets have too many

> MNIST: features => Can be reduced
>Default: 784 features (image pixels)

>Principal component analysis to reduce to 200
=> Less redundancy -

> Reuters:

>Default: Collect 2000 tokens (word snippets) as
features from each article

12

>(Can be reduced to 400 => Less redundancy

> TIMIT:
>Default: Collect 39 MFCCs as features
>Decrease by 3x to 13 => Less redundancy
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coNENEEER- - - - -
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o O O O O O O O O O O o o o

o
o
o

Pic courtesy: https://tensorflow.rstudio.com/tensorflow/articles/tutorial_mnist_beginners.html

>|ncrease by 3x to 117 => More redundancy

> CIFAR:

>Default: Pre-process using a deep 9-layer CNN
>Simplify to a 2-layer CNN => Less redundancy

Sourya Dey University of Southern California 20
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https://tensorflow.rstudio.com/tensorflow/articles/tutorial_mnist_beginners.html

Effect of redundancy on sparsity

W1 W
MNIST with default
784 features
| «ﬁL — Less redundancy => Less
W1 sparsification possible
MNIST reduced to
200 features
Wider spread

~1.0-0.50.0 0.5 1.0 ~1.0-0.50.0 0.5 1.0

Sourya Dey University of Southern California 21



Effect of
redundancy
on sparsity

Reducing redundancy leads
to performance starting to
degrade at higher densities

Sourya Dey
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(b) Reuters
Original: 2000 tokens
X Npet = (2000, 50, 50)
Tokens reduced to 400
Nnet = (400, 50, 50)
0 20 40 60 80 100
-9
(d) CIFAR-100
Original: 6-layer CNN
_*' MLP Npet = (4000, 500, 100)
Reduced to 1-layer CNN
@ Same MLP N,
0 20 40 60 80 100

Pret (%)
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Individual junction densities
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Latter junctions (closer to the output) need to be denser
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ndividual
junction
densities

Each curve keeps p, fixed and
varies p_., by varying p,

For the same p, ., p,> P,
improves performance

Similar trends observed for
deeper networks, with few
exceptions

Sourya Dey

98.01
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Top-5 Test Accuracy (%)
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(a) MNIST —- 10
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P2 (%)
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(b) CIFAR-100| —@— 6.3 —4— 2.6
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‘Large sparse’ vs ‘small dense’ networks

A sparser network with more nodes will outperform a
denser network with less nodes, when both have same
number of trainable parameters (weights+biases)

...unless density of the larger network goes lower
than a critical density (problem dependent)

Sourya Dey University of Southern California

25



(o] (o] (o] [te} (]
& (%)) (o)) ~ (o]

Test Accuracy (%)

(o]
w

92

91

90

‘Large sparse’ vs ‘small dense’ networks

Networks with same number of parameters go from bad

to good as #nodes in hidden layers is increased

— 14
— 28
— 56

Hidden neurons

— 112
— 224
— 392

~~e
~

Trainable

params

ke

311k
178k
89k
45k
23k
12k
6.5k
4.5k
2.7k
2k

20
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40
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pnet (cyo)

80

100

A
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98

Trainable
i Hidden params
94 \ neurons 't‘ iii: ‘
' —m
93] — sexz K2k
N -@ 11.5k
MNIST:| — 112x3 g 6.1k
(b) L=4 —— 224x3 - 2.7k
20 40 60 80 100
Pret (%)
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91.5

91.0

Test Accuracy (%)

89.5

89.01

-5k~ 4.1M
-¥- 2.1M

Trainable params

-&- 1M -@ 205k -~ 53k

-J- 513k - 103k

Hidden neurons (a) Reuters: L=2

— 50 —— 250 —— 1000 |, . b

—— 100 —— 500 —— 2000 higher densities

0 20 40 60 80 100
Pret (%)

v
Below critical density
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Regularization

C(‘w) = Co(w) + A ||Jwl|;

\ 4
Regularized cost

\ 4
Original unregularized

cost (like cross-entropy)

v
Regularization term

Sourya Dey University of Southern California
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Regularization

C(w) = Co(w) + A ||Jwlf3

‘ Overall Density
v 100 % 1.1 x 10-4
Regularized cost 40 % 5.5 x 105
v 11% 0

Original unregularized

_ Example for MNIST 2-junction networks
cost (like cross-entropy)

\ 4
Regularization term

Pre-defined sparsity reduces the
Pre-defined sparse networks need overfitting problem stemming from
smaller A (as determined by validation) over-parametrization in big networks

Sourya Dey University of Southern California 27



Most networks can be significantly
sparsified!

Exploits redundancy in dataset

Summary of pre-
defined sparsity —
Trends and design
guidelines

Later junctions need more density

‘Large and sparse’ networks are better
than ‘small and dense’ networks

Alternative to regularization

... these tie in with proposed

b i research on model search

Sourya Dey "
' @
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Hardware Architecture

We built a customized hardware architecture to leverage pre-defined sparsity

Key highlights:

> Edge-based

> Customizable amount of parallelism
> Clash free memory accesses

> Pipelined processing

Sourya Dey University of Southern California 30



Degree of parallelism z

Edge Interleaver

e o o o o - -

Example z, = 3

Sourya Dey

z;: = #edges (weights) processed in parallel in junction i

#weights ‘ W, ‘

#clock cycles (C;) to process junction i =
2

Computational complexity depends only on z,

Decouple hardware required from network complexity

Hardware
Intensive

Slow
Training

Flexibility

University of Southern California 31



Memory organization and clash freedom

z; memories for storing each variable —a, h’, 6, W, b — in each junction

Edge Interleaver

Interleaved Left side nodes are accessed in
order arbitrary order due to interleaving

FFo| [FF1| [FF2

Natural Weights are accessed one row at a time (natural order)
order

Must access each memory no more than once per
Example z,= 3 clock cycle, otherwise clash => processing stall

Sourya Dey University of Southern California 32




Memory organization
of a single junction

> 7z, =4 weights accessed per cycle

> Must access all 4 left memories
exactly once per cycle for clash-
freedom

> After D, = 3 cycles, all left nodes are

accessed once => 1 sweep
> Repeat for dout = 2 sweeps to access

all weights

> At most 2 right nodes accessed per
cycle => At least 2 right memories
required_for clash-freedom

Same bank
shown twice

Sweep 1

University of Southern California

Left

?

Cycle 3 ===
Cycle4 ===
Cycle 5 ===

<« Weight

Memories

do 1 2 3

4 5 6 7

8 9 10 11
12 13 14 15
16 17 18 19

420 21 22 23

Sweep 0

Sweep 1

33

Must have
at least
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Memories




Parallel and Pipelined processing

Operational
Parallelism |
n+L n+L-1 é n+2 ; n+1
A S LA S )

Junction
Pipelining

_——— ————————————— — ——— — — — — — — -

Sourya Dey University of Southern California

Operational parallelism: FF,
BP, UP simultaneously
inside a junction

Junction pipelining: Each
operates on different
Inputs across junctions

Faster training @ more
hardware and storage cost

34



Clash-free memory access patterns

Left node Mem 0O Mem1l Mem2 Mem 3 Storage: z.-length

number <
o @ i B B
coeo— o [ [ E B
Cycle 1 =
o — e [ E B

N, , = 12 left side nodes arranged in z, = 4 memories

seed vector

Computation: z.

iIncrementers

Can have richer
classes of memory

Fix a seed vector = (1,0,2,2) for starting cycle O locations access patterns @

For consecutive cycles, add 1 modulo memory depth more hardware cost

Sourya Dey University of Southern California 35



Types of pre-defined ——

distribute

S p ars |ty connections given

overall density

Structure the
network to have
constant in- and

out-degree for

® each node

Random —> Structured - Clash-free Fix z and structure
) ) the connections for

progressively restricts the network hardware-friendly

clash-free memory
accesses

Sourya Dey University of Southern California



Performance
Comparison

Hardware-friendly simple
clash-free patterns can
improve performance

Random sparsity can perform badly

Sourya Dey University of Southern California 37

dout

net

Pnet %

Znet

Test Accuracy Performance

Clash-free | Structured |

Random

MNIST: Npet = (800, 100, 100, 100, 10), FC test accuracy = 98 + 0.1

(80,80, 80, 10) 80.2 (200, 25,25, 4) 979+0.2 | 97.9+0.2 | 97.8 0.2
(60,60, 60, 10) 60.4 (200, 25,25, 4) 976 0.1 | 97.8+0.1 | 97.6 = 0.2
(40,40, 40, 10) 40.6 (200, 25,25, 5) 97.5+0.1 97.7 97.6 = 0.1
(20,20, 20, 10) 20.8 (200,25,25,10) | 97.2+0.2 | 97.24+0.1 | 97.1 £0.1
(10,10, 10, 10) 10.9 (200,25,25,25) | 96.7+0.1 | 96.8+0.2 | 96.7+£0.2
(5,10,10, 10) 6.9 (100,25,25,25) | 96.3+0.1 | 96.3+0.1 | 96.2+0.1

(2,5,5,10) 3.6 (80, 25,25, 50) 95+ 0.2 95.1+0.1 95+0.3

(1,2,2,10) 2.2 (80,20,20,100) | 93.3+0.3 | 93.14+0.5 92+0.3

Reuters: Nnet = (2000, 50, 50), FC test accuracy = 89.6 + 0.1
(25,25) 50 (1000, 25) 89.4+0.1 89.3 89.4

(10, 10) 20 (400, 10) 87+ 0.1 86.7+ 0.1 | 86.5+0.1
(5,5) 10 (200, 5) 785+05 | 782+£0.7 | 7T7.5+£0.6
(2,2) 4 (80,2) 533+18 | 51.24+1.7 | 46.8+2.9

(1,1) 2 (40, 1) 2844+24 | 28.7+2.3 28+ 1.9

TIMIT: Npet = (39,390, 39), FC test accuracy = 43.2 + 0.2

(270,27) 69.2 43+ 0.1 43 43+ 0.1
(180, 18) 46.2 42.7+0.1 | 4284+0.1 | 42.94+0.1
(90,9) 23.1 (13,13) 42.1+0.1 | 425401 | 4244+0.1
(60,6) 15.4 41.5+0.1 | 41.84+0.2 | 41.94+0.1
(30,3) 7.7 40.5+0.2 | 40.1+£0.2 | 39.4+0.8

CIFAR-100 : Npet = (4000, 500, 100), FC top-5 test accuracy = 87.1 £+ 0.6

(100, 100) 22 87.5+0.2 | 87.7+0.2 | 87.4+0.3
(29,29) 6.4 (2000, 250) 86.8+0.3 | 87.2+0.5 | 87.1+0.2
(12,12) 2.6 (400, 50) 86.3+0.2 | 86.5+04 | 86.6 0.4
(5,5) 1.1 ’ 85.3+0.5 | 85.5+0.5 | 85.7+0.3
(2,2) 0.4 (80, 10) 84.1+0.5 | 84.3+0.3 | 83.84+0.3
(1,1) 0.2 ’ 83+ 0.5 83.3+04 | 81.74+0.7




FPGA
Implementation

Initial hardware prototype of = @i I
pre-defined sparse 2-junction e R =
network training on MNIST e o s &

> Nodes =1120

> Weights = 5120

> Qverall density = 7.5%
> Total parallelism = 160

Xilinx Artix-7 FPGA on Digilent
Nexys4 board

University of Southern California




Some Findings and Considerations

:Accurate; Clipped= al hiStogra ms

i 0.3
8 98
0.25
7 97 (a) Sparse
. o > 02 Mean = 4.6
3 015 Stddev = 3.8
5 95 8 % Clipped = 17

Sigmoid activation
works better in 005

0.0

©
=

w
Yo}
w

Numerical Value
F=y

(Vo)
S
Percentage Accuracy

’ N hardware than RelLU Valus
1 =o-max(abs(weight)) =e~max(abs(bias)) 91 |
=o-max(abs(delta)) = =Percentage Accuracy 98 0.35 i
0 90 97 0.3
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Epoch Number 96 0.25 (b) FC
% 2 o2 Mean = 11
12-bit fixed point config: S o0 %015 Stddev =82
] . . € o3 = % Clipped = 57
(sign, integer, fractional) = (1,3,8) :.,
g o1
E 0.0 20 21 22 23 4 25 26
90 —e— Sigmoid [Value|
89 —a— |deal RelLU . .
. —+— ReLU capped at 2"3=8 Dynamic range is reduced
—k— RelU capped at 1

8761 3 3 4 5 6 7 & 6 10111213 14 15 16 17 18 19 20 due tO pre-deﬁned SparS|ty

Epoch number
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Ongoing / Future Work in H/W Implementation

This dissertation:
> More pipelining to improve speed (current clock frequency = 15 MHz)

Other members of our team:
> Better memory interfacing and management protocols

> Leveraging cloud FPGA resources to support bigger networks
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Biadjacency Matrices

Junction 1 Junction 2 Equivalent Junction 1:2
49" = 2 a9 =1 dyty = dy"ds™ =2
o M- iy =2 I = drdy =6

<=>

2 1 0
7322[0 01 1] Bio=ByB; = |9

—_ - O O
O VR = O
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Windowed connection patterns

o ||
. b ! For best results, nodes should
2 . get information from all

HFil nformatio
.r ‘-- v , portions of adjacent layers
.I - l => Define windows

«—Width = 28—  «——Width = 28—

I
N




Windowed connection patterns

- 1
B AN

For best results, nodes should
get information from all
portions of adjacent layers
=> Define windows

<+——gg = }yYbloy —

+—Width=28——  «—Width =28 ———



Windowed Biadjacency Matrices and Scatter

0
<=>
( 4
Bf_210201
2710 1 2 0 2 1
b |01 2 0 2 1 b b [2 1.0 2 0 1
Bl_[210201] 32_[1111] Bl=2_012021

qnet _ (S{ = (.83, Si) = 0.67, Sg = 1, S{;Q = 0.67, S}):Q — 067>
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Scatter — Performance prediction before training

[ <
v
Not explicitly planning (@) Morse (b) MNIST (c) CIFAR-10
i 75 90 88
connections performs (0.68, 0.64, 0.66, o (0.64, 1, 0.71, 066, 1, 18
the best —~ 65 0.62, 0.91, 0.91) 0.65, 0.68, 0.65) | g7| %02 1. 1/8, 4 oo 1 167
S R o 1.0.66, 1) ,1,0.67,
> 851 T 119,18 7° - 0.7, 0.66, 0.7)
> 55 oy | ®(1/8, 1, 0.66, @
© 1,1/8,1,1,1,1) or ®(1,1,1/4,1,1/4,1) I 1,1/4,1)
S 45(® (1,1,1/8,1,1,1) 801 o 85
o h o Same accuracy (1/16, 1, 1,1, 1/4, 1) 84
35/ .
tles N Wlt é 75 g3
proposed g 25 g
T 70
research on > 15|, (1,1,1,1,1/8,1/8) 811
del h ® (1/8,1,1,1,1/8,1/8) cs| @ (1/16.1,1/4.1,1/4,1) : ®(1/8,1,1/8,1,1/8,1)
moael searc D1 02 03 04 05 06 0.7°0.001020304050607 01 0203 04 0506 07
‘\ Scatter (S) Scatter (S) Scatter (S)

Scatter can help in filtering out bad networks before training ... (work in progress)
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4= Introduction and Background

\
Pre-Defined Sparsity
Hardware Architecture
| . Achieved
O Ut I n e > Research
_ Contributions
.L Connection Patterns
Dataset Engineering
_/

Model Search

Q
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Data, data, everywhere,
Not quality enough to use

Real world data has challenges: &N

> Too few samples 132 0.05 1200
> Incorrect labeling 109 A

o _ 0.78 B+ 1400
> Missing entries 114 1100

Synthetic data is generated using computer algorithms
> Very large quantities can be generated

> Mimic real-world data as desired

> Classification difficulty tweaking
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Morse Code
Datasets

Morse Code is a system of
communication where
letters, numbers and
symbols are encoded
using dots and dashes

Example:

+ ® - O o

Sourya Dey

Step 1:

Frame length: 64
Dot: 1-3
Dash: 4-9
Intermediate space: 1-3
Leading spaces: None
Trailing spaces: Remaining at end

}

Step 2:

Expected value range = [0,16]

Dot, dash = Normal(12,4/3)
Space =0

!

Step 3:

Additive Noise = Normal(0,0)
(For this case, 0=1)

University of Southern California

<+—— 64-wide input frame —»

AT |

1 3 3 2 38
Codeword Length = 26. Remaining spaces = 38

0,0,0,...x38

T

o 000 00,0 0,0

ITETE

12,12,9,12,13,14,10  11,13,14,12,12

1 0,10 2,01 0,0 0,2,1,0,...

\IffT

13,12 T 13,9 11

12,11,8,14,16,14,11 10,13,12,14,11
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Variations and Difficulty Scaling

I Dots and dashes [ Spaces [ Confusion
> More noise g Noise o = 1 Noise o = 2
> Leading and trailing spaces
> Confusing dashes with dots and spaces E E
> Dilating frame to size 256 ) -
> Increasing #samples in dataset \ —,

Value Value

80

au o N
o © ©

/

Percentage Accuracy
S
o

Probability
Probability

30
20
10

0

1/8 1/4 1/2 1 2 4 8
Size Scale x for Dataset 'Morse Size x'

—8-Test Accuracy after 30 epochs
—®—(Train Accuracy - Test Accuracy) after 30 epochs Value Value

51
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Neural network performance

S un
© o N
N oo o o0
O g D s o
] oq
& D
o o
LN 0 un o
;i e o
@ -
I Im 3
o ()] ©O = o
- - - N N N ()]

100

0
(=)

Percentage Accuracy
(e
o

~
&R NS
o o & 9 ~ ™
'\mN w'\.N
~ N ~ 9
<t o ™M
© t-)
| I
Im I
©O «H &N o o ©O «H &N o o

M~
o N
5 - 2 3
. 5 5 8
LN © o
40 - - §
0
(o] < o < L | (o] o <
- - N m o ;oo <t & & < < & & <
Baseline + Noise Noise + Noise + Dilated by 4 : Noise +  Using L2 reg = 107-5
Leading Spaces Leading Spaces + Leading Spaces + Dilated by 4 : Noise +
Dash Length=3-9 Dash Length=3-9 Leading Spaces +

Dash Length=3-9
Tunable dataset difficulty leads to a variety of benchmarks °

Sourya Dey University of Southern California 52



Metrics to characterize dataset difficulty

\- uyin (1)
Viower — Z P(?TL)Q Ao 2
m=1 m
N, Ny,
d(m, j)?
Ve = 35 Pl 35 0
m=1 j=1 m
JFEM
N oo
Zmil dmin (M)
Vdist — NL
N N
W B S |Cm ]”1 \
thresh|— Sj S:H N < 0.05
m=1 j3=1 0 /I
1£m
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Metrics to characterize dataset difficulty

I
v

Probability of the
mth class occurring

‘/iOWGI'

Minimum distance

Gaussian Q-function =«

Vupper

> between centroids of mth
class and any other class

——, Average variance across
all features in mth class

\A

Distance between centroids
of mth and jth classes

» #features

Sourya Dey

University of Southern California
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Goodness of the Metrics

Pearson’s correlation coefficient between

Metric - . metric and test set classification accuracy of
Morse code datasets of varying difficulty
Viower | -0.59 (negative because metrics indicate difficulty)
Vipper | -0.64
Viis -0.63 :
dist Metrics can be used to understand the
Vihresn | -0.64 inherent difficulty of the classification

problem on a dataset before applying
any learning algorithm
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M Introduction and Background

Pre-Defined Sparsity

Hardware Architecture

Outline

.L Connection Patterns

Dataset Engineering

(), Model Search

Sourya Dey University of Southern California

Proposed
Research
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Introduction to Model Search?

Neural networks are largely black boxes

> How do they work?

> Are so many layers and neurons really needed?

> Which parts of a network are the most important?
> How should different layers be connected?

> What are good hyperparameter values?

Sourya Dey University of Southern California
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Types of Model

Search

Model Search

Sourya Dey

Architecture
Search

(Network structure,

Evolutionary
Algorithms

Reinforcement
Learning

layers, connection Other

patterns, ...)

Approaches

Search

Hyperparameter

Optimization

(Learning rate,
regularization, ...)

Scheduling

University of Southern California

Focus on small pieces of the
network, mutate them to get
better pieces, combine

Use Q-learning or policy
gradient methods to select new
networks to try out

Fancy early stopping, predicting
performance before training

Algorithms to decide good
initial values of

hyperparameters

Dynamically adjust values of
important hyperparameters as
network learns

57




Evolutionary
Algorithms

Related Work

Architecture

Search Reinforcement

Learning

Total ‘GPU days’
for finding a good Other

architecture can Approaches
be >100

Model Search

Search

Hyperparameter
Optimization

Scheduling

Sourya Dey University of Southern California

(Miikkulainen 2017 — Evolving DNNs )

Liu 2018 — Hierarchical
Representations

 Real 2018 — Regularized Evolution

4 N\

Zoph 2016 — NAS

Baker 2017 — Designing NN
Architectures using RL

Pham 2018 — ENAS

Liu 2017 — Progressive NAS

Baker 2018 — Accelerating NAS
using Performance Prediction

Liu 2018 — DARTS

( Bergstra 2012 — Random search

Bergstra 2013 — Making a Science
of Model Search

(Snoek 2012 — Bayesian optimization,

(Smith 2017 — Cyclical learning rates |
Loschilov 2017 — SGDR

Goyal 2017 — Accurate, large
minibatch SGD
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> Architecture search with focus on low
complexity networks

>Extend complexity reduction methods like pre-
defined sparsity to other networks beyond

MLP

>Lower complexity networks can train faster
(sparse libraries)

>Democratize architecture search to entities
without enormous finances

Our Proposed
Research

> Deeper understanding of neural networks

Sreciar Il 2 >Build on trends and guidelines for sparsity
of designing well- Ey >Which parts of a network are important —
performing, low comp/exity A leverage evolutionary algorithms

_ Sparse neural I’IEtWOI’kS fOI’ <3 Build on scatter-like methods to predict

performance prior to training
‘ VGI’IOUS Gpp/ICOtIOI’)S

GOAL: Automate the process

>More informed early stopping — software and
hardware monitors

‘.2.
RS
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Summary of

Contributions

Sourya Dey

University of Southern California

Proposing and analyzing pre-defined
sparsity to reduce NN complexity

Hardware architecture to leverage pre-
defined sparsity

Analyzing connection patterns and
performance predicting measures

Family of synthetic datasets on Morse
code with tunable difficulty

Better pipelining to improve hardware
architecture

Architecture search and understanding
of low complexity neural networks

[Time and resources permitting]
Hyperparameter search tuned to low
complexity neural networks

60



g L

ONE'SIMPLY DOESINOT. %

v

hank you!

« - J

’ITNnEnsTANn NEURAL
NETWORKS FULLY

Sourya Dey



