
Junction i

A Highly Parallel FPGA Implementation

of Sparse Neural Network Training
Sourya Dey, Diandian Chen, Zongyang Li, Souvik Kundu, Kuan-Wen Huang,

Keith Chugg, Peter Beerel, Hardware Accelerated Learning group, USC

Contact Information: souryade@usc.edu, chugg@usc.edu, pabeerel@usc.edu
This work is partly supported by National Science Foundation, USA, Grant #1763747.

MethodologyMotivation & Introduction

Hardware
Accelerated
Learning

Neural networks too big to be trained on-chip
Cloud resources are costly

Our Solution: Pre-defined sparsity

Reduces edges, hardware friendly
Fixed in-, out-degree of each node

Train neural networks on FPGAs

3 operations:
Ø Feedforward (FF)
Ø Backpropagate (BP)
Ø Update (UP)

All use weighted junction edges

ü Process z edges in 1 clock cycle
ü 1 block cycle = Total clock cycles to

process all edges in any junction
ü Ideal throughput = (Block cycle)-1

z = 6

Hardware Acceleration – Parallelism and Pipelining

Operational Parallelization: FF, BP, UP together inside a junction
Clash Freedom: Each memory
accessed at most once in a cycle

Junction pipelining: Different input samples
processed together across all junctions

Network
parameters

stay within 8
=> Use fixed
point with 3
integer bits

Bit Width Studies

Junction Number 1 2
Left Neurons 1024 64

Right Neurons 64 32
Out-degree 4 16

Weights 4096 1024
In-degree 64 32

z 128 32

Block Cycle 32 32
Density 6.25% 50%

FPGA Implementation – MNIST

Training and Inference on Artix-7

Slow
Training

Reconfigurability

Resource
Intensivez

Overall Density 7.576%

Fixed Point Bit Width 12
Clock Frequency 15 MHz

Block Cycle Duration 2.27 µs
Accuracy (after 14

training epochs)
96.5%

Histograms of
weight-activation dot
product in junction 1.

Pre-defined sparse

networks have less

errors due to finite

bit-width effects.

Ongoing Research:
Ø Increased pipelining to improve speed
Ø Memory bandwidth management for bigger networks

