

Exploring Complexity Reduction in Deep Learning

Sourya Dey

PhD Candidate, University of Southern California Advisors: Peter A. Beerel and Keith M. Chugg

February 18th, 2020

USC Viterbi

School of Engineering Ming Hsieh Department of Electrical and <u>Comp</u>uter Engineering

Outline

Introduction

Overview

Neural networks (NNs) are key machine learning technologies

- > Artificial intelligence
- Self-driving cars
- Speech recognition
- ➢ Face ID
- ➤ and more smart stuff ...

Motivation behind complexity reduction

Modern neural networks suffer from parameter explosion

Fully connected (FC) Multilayer Perceptron (MLP)

Training can take weeks on CPU

Cloud GPU resources are expensive

Google Cloud Platform

Sourya Dey

Pre-Defined Sparsity

Reduce complexity of neural networks with minimal performance degradation

Motivation behind pre-defined sparsity

In a FC network, most weights are very small in magnitude after training

Pre-defined Sparsity

Pre-define a sparse connection pattern **prior to training**

Use this sparse network for both training and inference

Reduced training and inference complexity

Pre-defined sparsity performance on MLPs

Sourya Dey

University of Southern California

Designing pre-defined sparse networks

A pre-defined sparse connection pattern is a **hyperparameter** to be set prior to training

Find trends and guidelines to optimize pre-defined sparse patterns

S. Dey, K. Huang, P. A. Beerel and K. M. Chugg, "Pre-Defined Sparse Neural Networks with Hardware Acceleration," in *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, vol. 9, no. 2, pp. 332-345, June 2019.

1. Individual junction densities

Latter junctions (closer to the output) learn higher-order, more complicated representations => They need to be denser

Sourya Dey

University of Southern California

Results

Each curve keeps $\rho_{\rm 2}$ fixed and varies $\rho_{\rm net}$ by varying $\rho_{\rm 1}$

For the same ρ_{net} , $\rho_2 > \rho_1$ improves performance

Mostly similar trends observed for deeper networks

2. Dataset redundancy

Results

Reducing redundancy leads to increased performance degradation on sparsification

Pre-defined sparse design is problem-dependent

3. 'Large sparse' vs 'small dense' networks

A sparser network with more hidden nodes will outperform a denser network with less hidden nodes, when both have same number of weights

Results

Networks with same number of parameters go from bad to good as #nodes in hidden layers is increased

University of Southern California

4. Regularization

$$C(\boldsymbol{w}) = C_0(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2$$

Regularized cost
Original unregularized
cost (like cross-entropy)
Regularization term

Pre-defined sparse networks need smaller λ (as determined by validation)

Overall Density	λ
100 %	1.1 x 10 ⁻⁴
40 %	5.5 x 10⁻⁵
11 %	0

Example for MNIST 2-junction networks

Pre-defined sparsity reduces the overfitting problem stemming from over-parametrization in big networks

Applications and extensions of pre-defined sparsity

A hardware architecture for on-device training and inference, prototype implemented on FPGA

S. Dey, Y. Shao, K. M. Chugg and P. A. Beerel, "Accelerating training of deep neural networks via sparse edge processing," in *26th International Conference on Artificial Neural Networks (ICANN)* Part 1, pp. 273-280. Springer, Sep 2017.

Transferred to and currently being developed by team SAPIENT, in collaboration with DTRA and USC Information Sciences Institute (ISI).

Sparsifying kernels / filters in convolutional layers

S. Kundu, M. Nazemi, M. Pedram, K. M. Chugg and P. A. Beerel, "Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks," in *IEEE Transactions on Computers*, 2020.

Custom sparse libraries in software frameworks

- torch.sparse Experimental API with room for improvement
- ➤ tensorflow.sparse

S. Dey, "Sparse Matrices in Pytorch," in *Towards Data Science, Medium publication*, 2019. <u>https://towardsdatascience.com/sparse-matrices-in-pytorch-be8ecaccae6</u>

W ₁₁	W ₁₂	W ₁₃
W ₂₁	W ₂₂	W ₂₃
W ₃₁	W ₃₂	W ₃₃

Deep-n-Cheap

Automated search framework to explore performance-complexity tradeoffs in CNN design

Find networks which optimize performance keeping in mind given complexity constraints

The optimization problem for f

Performance and complexity are both functions of overall config:

- Discrete architecture hyperparameters (#layers, type of layer, ...), AND
- > Continuous training hyperparameters (learning rate, weight decay, ...) Example: $\mathbf{x}_i = (10 \text{ conv layers}, 6 \text{ batchnorm layers}, \text{Ir}=10^{-3}, \text{ weight decay}=10^{-4})$

Approaches:

- Bayesian optimization
- Grid search

Bayesian optimization

Sample $f(\cdot)$ for *n* initial configs and model via a *Gaussian process*

$$f(\boldsymbol{X}_{1:n}) \sim \mathcal{N}\left(\underset{n \times 1}{\boldsymbol{\mu}}, \underset{n \times n}{\boldsymbol{\Sigma}}\right) \qquad \boldsymbol{\Sigma} = \begin{bmatrix} k(\boldsymbol{x}_1, \boldsymbol{x}_1) & \cdots & k(\boldsymbol{x}_1, \boldsymbol{x}_n) \\ \vdots & \text{Covariance} & \vdots \\ k(\boldsymbol{x}_n, \boldsymbol{x}_1) & \cdots & k(\boldsymbol{x}_n, \boldsymbol{x}_n) \end{bmatrix}$$

Calculate *expected improvement* for new configs

Expensive f evaluations are minimized

Sourya Dey

University of Southern California

Designing the 'ramp' kernel function

Distance
$$d(x_1, x_2) = \omega \left(\frac{|x_1 - x_2|}{u - l} \right)^r$$

Kernel $k(x_1, x_2) = e^{-d^2/2}$

Example: batch_size Given: $l=32 \le$ batch_size $\le u=512$ $x_1 = 200, x_2 = 100, \omega = 3, r = 1$ => k = 0.82

Kernel values for each search parameter are combined to get overall kernel between 2 configs

Search framework

Step 1 – Core architecture using Bayesian optimization

- Number of convolutional layers
- Number of filters in each

Step 2 – **Remaining architecture** using grid search

- 1. Strides vs max pooling
- 2. Batch normalization locations
- 3. Dropout locations and probabilities
- 4. Shortcut connections

Sequential, but

order can be interchanged

Combined space

- > Step 3 Training hyperparameters using Bayesian optimization
 - > Initial learning rate
 - > Weight decay
 - Batch size

- Combined space

CIFAR-10 Results

W _c	Initial Ir	Weight decay	Batch size
0	0.001	3 x 10 ⁻⁴	195
0.01	0.001	8.3 x 10 ⁻⁵	256
0.1	0.001	1.2 x 10 ⁻⁵	459
1	0.003	0	452
10	0.001	0	256

Effect of *w*_c

Legend:

CIFAR-10 with basic augmentation – normalization, flips, crops. Incurs data loading overheads! CIFAR-10 without any preprocessing / augmentation. No data loading overheads!

Some observations:

- Tradeoffs when switching from w_c
 = 0 (14 layers) to w_c = 1 (4 layers) :
 Per epoch training time reduces by
 3X and overall search time by >10
 hrs at the cost of 4% performance
- A 5 hr search yields a net with 88% accuracy on CIFAR-10.

Performance - Complexity Tradeoff

Spend a lot to get that last bit of performance!

Transfer learning to CIFAR-100

Given a search process optimized for dataset A, how do the best configs perform on dataset B? In other words, how do they compare with configs from a separate search optimized for B?

Best network for CIFAR-10 performs better on CIFAR-100 than the best network for CIFAR-100!

 w_c varies through [10, 1, 0.1, 0.01, 0] along each line

Our upcoming work...

- We will release Deep-n-Cheap as an autoML framework for people to freely use to explore performance-complexity tradeoffs. (*ETA: On Github in April*)
 - Existing frameworks like AutoKeras and AutoGluon are limited in the architectures they search. For example, AutoGluon takes mins / epoch to try >50 layer networks on CIFAR-10.
 - Other existing frameworks like Auto-sklearn and Auto-PyTorch only support MLPs.

Dataset Engineering

A family of synthetic datasets of customizable difficulty for ML classification problems

Synthetic Datasets on Morse Code Classification

- > Inputs: Intensity values for dots, dashes and spaces in Morse codewords
- Outputs: The actual symbol represented by the codeword
- > Added features to customize difficulty such as noise and dataset size
- Cheaply generate large quantities of data

S. Dey, K. M. Chugg and P. A. Beerel, "Morse Code Datasets for Machine Learning," in ICCCNT 2018. *Won Best Paper award.* <u>https://github.com/usc-hal/morse-dataset</u>

Team Members

Peter Beerel Professor

Keith Chugg Professor

Leana Golubchik Professor

Kuan-Wen Huang PhD Student

Andrew Schmidt

Senior Computer Scientist, USC ISI

Souvik Kundu PhD Student

Saikrishna C. Kanala

MS Student

... and others

Thank you!

I'll graduate soon and plan to conduct postdoctoral research

https://souryadey.github.io/

