Exploring Complexity
Reduction in Deep Learning

Sourya Dey

PhD Candidate, University of Southern California
Advisors: Peter A. Beerel and Keith M. Chugg

February 18th, 2020

USC
Viterbi

School of Engineering
Ming Hsieh Department
of Electrical and
Computer Engineering

Outline

Reduce complexity of neural
networks with minimal
performance degradation

A'}

Dataset
Engineering

Automated search framework to & § B A family of synthetic datasets

explore performance-complexity ; of customizable difficulty for
: ML classification problems

@

Overview

Neural networks (NNs) are key
machine learning technologies

» Artificial intelligence

» Self-driving cars

» Speech recognition

» Face ID

» and more smart stuff ...

Sourya Dey University of Southern California 4

Motivation behind complexity reduction

Modern neural networks suffer from parameter explosion

Training can take weeks on CPU

Cloud GPU resources are expensive

gl \icrosoft
Wl Azure

ne

amazon

’.0
%¢ webservices

’.

j

Fully connected (FC) Multilayer Perceptron (MLP)

Google Cloud Platform

Typical
deep
CNN

0001 2

A

jood Sae
4

Z1S ‘AUOd EXE

4

Z1S ‘AU0d EXE

4

Z1S ‘AU0D EXE

4

Z1S ‘Au0O EXE

4

Z1S ‘AU EXE

4

Z/ ‘TS ‘A0 £XE

4

9SZ ‘AUOD EXE

4

9SZ ‘AUOD EXE

4

95T ‘AUOD EXE

4

9SZ ‘AU EXE

4

95T ‘AU EXE

4

95T ‘AU EXE

4

95T ‘AU EXE

4

9ST "AUOD EXE

4

95T ‘AUOD EXE

4

95T ‘AU0O EXE

4

9ST ‘AUOD EXE

4

Z/ "9ST ‘Au0d EXE

A

8Z1 ‘AUOD EXE

4

8ZT ‘AUOD £XE

4

BZ1 ‘AUOD EXE

4

BZT ‘AUOD EXE

4

BZT ‘AUOD EXE

4

BZT ‘AUOD EXE

4

8ZT "AUOD £XE

4

Z/ ‘8T1 'AUOD EXE

4

v9 ‘AUOD £XE

4

9 ‘AUOD EXE

4

v9 ‘AUOD EXE

4

v9 ‘AUOD EXE

4

v9 ‘AUOD EXE

4

R ——— . T

9 ‘AUOD EXE

A

z/ ‘lood

4

Z/'v9 "‘Auod (x|

*

University of Southern California

Sourya Dey

@

Reduce complexity of neural
networks with minimal
~ performance degradation

Motivation behind pre-defined sparsity

-0.6 -0.3 0.0 0.3 0.6

<
N <

N g7
L

6 O E0.6 -0.3 0.0 0.3 0.6; O 5

-0.6 -0.3 0.0 0.3 0.6

-
R
e

-

o

e
S A

N
4

7

i S

N\

N
SN

e

- - = N
Q‘
e \\‘

-

N

—

-

o -
-

5
=

Z 2

/'I’

—

In a FC network, most weights are very small in magnitude after training

University of Southern California

Sourya Dey

Pre-defined Sparsity

Pre-define a sparse connection
pattern prior to training

Use this sparse network for both
training and inference

Reduced training
and inference
complexity

Nnet — (87 47 4)

d°vt — (1, 2) Structured Constraints:

din _

t
- Fixed in-, out-degrees

net = (2,2 for every node

S

52

é‘v
/

AW

\

o

4 x 2

=\
4 x 4 %

-3 — 33% Overall Density

_8><1
L= g x4
—_ 8—
pnet—32_

University of Southern California

- 16 compared to FC

8

Test Accuracy (%)
O O © © © O VO
w ©

O
=

(00}
O

(00} (00}
~ (00}

(o0}

Test Accuracy (%)
(@)

(00]
92}

Pre-defined sparsity performance on MLPs

[S2 B e) BN

N

%) -
Starting with only 20%
of parameters reduces
\ test accuracy by just 1%
ﬁ) MNIST handwritten digits
_ / Reuters news articles
TIMIT phonemes
CIFAR images
] ,] , , Morse symbols
0 20 40 60 80 100

Overall Density (%)

Sourya Dey University of Southern California

Designing pre-defined sparse networks

A pre-defined sparse connection
pattern is a hyperparameter to
be set prior to training

Find trends and guidelines to
optimize pre-defined sparse patterns

S. Dey, K. Huang, P. A. Beerel and K. M. Chugg, "Pre-Defined
Sparse Neural Networks with Hardware Acceleration,"

in IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 2, pp. 332-345, June 20109.

Sourya Dey University of Southern California 10

1. Individual junction densities

Input

NG

% .,
W

02,

A.
Nl
i
‘v WX

Vb,
\s@
1725
Uy

\

\
.

-0.6 -0.3 0.0 0.3 0.6

A
A

N

==

-0.6 -0.3 0.0 03 0.6

AN

Q9

e

NAWY
l%‘
‘. ()

7.

4

—
—

N —

NS

2

—

N

N

N\
N

g‘\s‘ x
‘
e

S

e
N\
N

)
W

R

SO

.

-

\v
—

-
—

P g

S

-

-~
-~

C

PN

”~

&
7o
77

2 4
—~
,

ol
Aot
o L

/.

.

—

o -
o

-

g

77 2

¥

=

-

=~
-~

Z 2

-,
_—

e

;

(4

”

7

l
/

”,
L/

/

Z

—

~—

I o E0.6 -0.3 0.0 0.3 0.6; O E

_—

o\

SNONS ——

N\
N

Latter junctions (closer to the output) learn higher-order,
more complicated representations => They need to be denser

11

University of Southern California

Sourya Dey

Results

901

2
9
g 80 1
, <
Each curve keeps p, fixed and g .
varies by varyin 2
Prnet BY VArying p, @) MINIST T 10 =
10 20 30 40 50 60 70 80 g
88.0- O
For the same p,.;, P> > pP; <
. S D 601
improves performance 587 =
g 87.0 o
- < e
Mostly similar trends observed 4 ses 501 *
I_
for deeper networks 2 g6.0 02 (%) % 6
o —h— 22 == 3.2 A 4
" ass (b) CIFAR-100| —@— 6.3 —— 2.6 .ol (c) Reuters o 2
25 50 7.5 100 12.5 150 17.5 20.0 22.5 10 20 30 40 50
Pret (%) Pnet (%)

Sourya Dey University of Southern California 12

2. Dataset redundancy

0 5 10 15

High redundancy

Sourya Dey

20

25

MNI
defa
fed

ST
ult

‘tur

to 200 fea

red

sp

University of Southern California

~1.0-0.50.0 0.5 1.0

—-1.0-0.50.0 0.5 1.0
Less redundancy => Less

sparsification possible

Results

Reducing redundancy leads

to increased performance
degradation on sparsification

Pre-defined sparse design is
problem-dependent

Sourya Dey

1001

90 1

Test Accuracy (%)

301

H
w

EAN
N

Test Accuracy (%)

w
(o]

80 1

701

60 1

501

40 1

06
40 60 80 100,

(a)

MNIST

e

Original: 800 features
Npet = (800, 100, 10)

PCA reduced to 200 features
Nnet = (200, 100, 10)

20 40 60 80

100

H
[

H
o

(c) TIMIT

Original: 39 MFCCs
* Nnet = (39, 390, 39)

Reduced to 13 MFCCs
o Npet = (13, 390, 39)

Increased to 117 MFCCs
- N, = (117, 390, 39)

20

40 60 80 100

Pnet (%)

University of Southern California

Test Accuracy (%)

W
o

N
o

N 00
o O U

Top-5 Test Accuracy (%)
9 [e)} [0)} ~
v v °

Ul
o

~
o

()]
o

Ul
o

I
o

—de

(b) Reuters

Original: 2000 tokens
Npet = (2000, 50, 50)

Tokens reduced to 400
Nnet = (400, 50, 50)

0 20

40 60 80 100

—

Original: 6-layer CNN
X MLP Npet = (4000, 500, 100)

Reduced to 1-layer CNN
® Same MLP N,et

(d) CIFAR-100

0 20

40 60 80 100
Pnet (%)
14

3. ‘Large sparse’ vs ‘small dense’ networks

A sparser network with more ‘ ﬁ
hidden nodes will outperform

a denser network with less

hidden nodes, when both

have same number of weights

ern California 15

Sourya Dey University of South

(o] (o] (o] [te} (]
& (%)) (o)) ~ (o]

Test Accuracy (%)

(o]
w

92

91

90

Results

Networks with same number of parameters go from

bad to good as #nodes in hidden layers is increased

3

~~e
~

Trainable
params

-sk- 311k
-¥- 178k
-@- 89k
-%- 45k
-@- 23k
- 12k
-4 6.5k
— 14 — 112 . ash
MNIST: — 28 — 224 % 2.7k
(a) L=2 — 56 —— 392 -A- 2k

Hidden neurons

0 20 40 60 80 100

pnet (cyo)

Sourya Dey

97

~~—.

~~~~~~

96 .
95
Trainable
1\ Hidden o
94 \ neurons "' 279t ‘
\ -¥- 114
\\ -~ 14)(3
— 28x3 -@ 51k
93 -k- 24k |
N 26x3 @ 115K
MNIST: | — 112x3 g 6.1k
(b) L=4 —— 224x3 -¢- 2.7k
20 40 60 80 100
Pret (%)

University of Southern California

91.5

91.0

Test Accuracy (%)

89.5

89.01

-5k~ 4.1M
-¥- 2.1M

Trainable params
-9 1M -@- 205k -4~ 53k
-%- 513k -4 103k

Hidden neurons

(a) Reuters: L=2

— 50 —— 250 —— 1000 |, . b

— 100 —— 500 —— 2000 higher densities

0 20 40 60 80 100
Pret (%)

16




4. Regularization

Pre-defined sparse networks need
9 smaller A (as determined by validation)
C(w) = Co(w) + Afjw][;
l

100 % 1.1x 10*
40 % 5.5x 107

\ 4 . 11 % 0
Original unregularized

cost (like cross-entropy)

Regularized cost

Example for MNIST 2-junction networks

\ 4
Regularization term

Pre-defined sparsity reduces the
overfitting problem stemming from
over-parametrization in big networks

Sourya Dey University of Southern California 17



Applications and extensions of pre-defined sparsity

A hardware architecture for on-device training and
inference, prototype implemented on FPGA

S. Dey, Y. Shao, K. M. Chugg and P. A. Beerel, “Accelerating training of deep neural networks via sparse edge processing,”
in 26th International Conference on Artificial Neural Networks (ICANN) Part 1, pp. 273-280. Springer, Sep 2017.

Transferred to and currently being developed by team SAPIENT, in
collaboration with DTRA and USC Information Sciences Institute (ISI).

Wi | W | Wi
Sparsifying kernels / filters in convolutional layers

S. Kundu, M. Nazemi, M. Pedram, K. M. Chugg and P. A. Beerel, “Pre-defined Sparsity for W,y W, Wz
Low-Complexity Convolutional Neural Networks,” in IEEE Transactions on Computers, 2020.

Custom sparse libraries in software frameworks Wa | Wa | Wi

» torch.sparse — Experimental APl with room for improvement
» tensorflow.sparse

S. Dey, “Sparse Matrices in Pytorch,” in Towards Data Science, Medium publication, 2019.
https://towardsdatascience.com/sparse-matrices-in-pytorch-be8ecaccaeb

Sourya Dey University of Southern California 18


https://towardsdatascience.com/sparse-matrices-in-pytorch-be8ecaccae6

@

Deep-n-Cheap

Automated search framework to
explore performance- compIeX|ty
tradeoffs in CNN design



Objective

Find networks which optimize performance
keeping in mind given complexity constraints

Loss function for search: f=f (Performance) + w_ *f (Complexity)

1 —val accuracy Wall clock time to
train per epoch

w. is like regularization

Good performance Quick to train

Slow to train Sacrifice performance
Slow search process

Sourya Dey University of Southern California 20



The optimization problem for f

Performance and complexity are both functions of overall config:
» Discrete architecture hyperparameters (#layers, type of layer, ...), AND
» Continuous training hyperparameters (learning rate, weight decay, ...)

Example: x; = (10 conv layers, 6 batchnorm layers, Ir=103, weight_decay=10-)

Approaches:

» Bayesian optimization
» Grid search

Sourya Dey University of Southern California 21



Bayesian optimization

Sample f(:) for n initial configs and model via a Gaussian process

k(xy,x1) - k(xi,x,)
f(Xlzn) NN( | V7 > ) > = . Covariance :
nxl NMXn kernel k
-k(wn7 L1) - K(wna wn)_

Calculate expected improvement for new configs

El (phew) =(f"—pn) P (f* — ,u> op <f* — M) Expensive f

1 l o | 4 evaluations

N(0,1 N(0,1 o
Clé::tnt ((;?jf ) (pdf) are minimized

Sourya Dey University of Southern California 22




Designing the ‘ramp’ kernel function

Distance d (xl, wg)

Kernel k (3317 x2)

Example: batch size
Given: /=32 <= batch_size <= y=512

X1=200,X2=100,w=3,l’=1

=>k =0.82

Sourya Dey

(e =22\
= W

u —
_ o—d7/2

Kernel values for each search
parameter are combined to get
overall kernel between 2 configs

University of Southern California

23



Search framework

» Step 1 — Core architecture using Bayesian optimization

» Number of convolutional layers
» Number of filters in each

} Combined space

» Step 2 — Remaining architecture using grid search

1. Strides vs max pooling

2. Batch normalization locations

3. Dropout locations and probabilities
4. Shortcut connections

\

Sequential, but
> order can be

-

interchanged

» Step 3 — Training hyperparameters using Bayesian optimization

» Initial learning rate
» Weight decay Combined space

> Batch size

Sourya Dey University of Southern California

24



Conv 50
BatchNorm

Conv 52
BatchNorm
Dropout 0.3

Conv 59,
BatchNorm
Dropout 0.3

Conv 95
BatchNo

Conv 96
BatchNorm
Dropout 0.3

Conv 97
BatchNor

Conv 12
MaxPool
BatchNorm
Dropout 0.3

MaxPool
BatchNorm
Dropout 0.3

Conv 351

BatchNorm
Dropout 0.3

Conv 488
BatchNor

Conv 496
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

Conv 39

Conv 60
MaxPool
BatchNorm

Conv 120
BatchNorm

Conv 124
MaxPool
BatchNorm
Dropout 0.3

Conv 178

Conv 192
MaxPool
BatchNorm

Conv 292
BatchNorm

Conv 328
BatchNorm
Dropout 0.3

Conv 352

Conv 396
BatchNorm

Conv 488
BatchNorm

Conv 488
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

Conv 46
BatchNorm

Conv 51
MaxPool
BatchNorm
Dropout 0.3

Conv 70
BatchNorm

Conv 114
BatchNorm
Dropout 0.3

Conv 128, /2
BatchNorm

Conv 208
MaxPool
BatchNorm
Dropout 0.3

Conv 286
BatchNorm

Conv 371
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

Conv 61
MaxPool

Conv 116
MaxPool
BatchNorm
Dropout 0.15

Conv 216
MaxPool
BatchNorm
Dropout 0.15

Conv 358
BatchNorm
Dropout 0.15

G. A. Pool
Softmax

Conv 37
MaxPool

Conv 67

MaxPool
Dropout 0.15

Conv 130

Conv 170
Dropout 0.15

G. A. Pool
Softmax

CIFAR-10 Results

0.01
0.1
1
10

ST EEED
CEET RS
Bl WE ¥ N
F S - P
Pl B FTE
S oy e [SIAb
LEEWES ANE
LRG|
e e P
dE L= R

0.001 3x10*
0.001 8.3x10°
0.001 1.2 x10°
0.003 0
0.001 0

256
459
452
256



Effect of w,

94(®) s §351? Legend:
ilb 2 . . .
3921 o < 30 CIFAR-10 with basic augmentation —
590 ® a2 normalization, flips, crops. Incurs data
g 22 ’ ® i loading overheads!
§ o | ¢ % 12 (@ CIFAR-10 without any preprocessing /
é g | £ U augmentation. No data loading overheads!
80 - an g 2 n @ l.l
0 001 01 1 10 0 001 01 1 10
We We Some observations:
[ O, s |o > Tradeoffs when switching from w,
= 25 i £ 81 ¢ =0 (14 layers) to w. =1 (4 layers) :
S 20 |® i 2. |? Per epoch training time reduces by
5 s | ® o & 3X and overall search time by >10
E T e 4 > hrs at the cost of 4% performance
el o 22 @ » A5 hrsearch yields a net with 88%
S £
e 5| | | @ o 3,L | | “ o accuracy on CIFAR-10.
0 001 01 1 10 0 001 01 1 10 6



Performance - Complexity Tradeoft

Dot size « Search time
94 - -

© >

O
N

O
o

Spend a lot to get that
last bit of performance!

Test accuracy (%)
(00] (00) (0] (0]
N 4= (@) (00
Q@

0
o

0 5 10 15 20 25 30 35
Training time / epoch (sec)

Sourya Dey University of Southern California 27



Transter learning to CIFAR-100

Given a search process optimized for dataset A, how do the best configs perform on dataset B?

In other words, how do they compare with configs from a separate search optimized for B?

N~
= N
o

o
o~
U

Test accuracy (%)
S @
w o

o)
o
=)

wn
-
n

1 . -@- Searched for CIFAR-100 w/ aug

@ Searched for CIFAR-10 w/ aug,
transferred to -100 w/ aug

4 5 6 7 8 9 10 11 12
Training time / epoch (sec)

70 1
Best network for CIFAR-  Res;
10 performs better on gw_
CIFAR-100 than the best  §
network for CIFAR-100! g %

501

® T ®
______________
o9 .

" ,.(.T.f .........

.. * 37

-
¢
1
|
I
[
f
4

'y Searched for CIFAR-10 w/o aug,
transferred to -100 w/o aug

. -@- Searched for CIFAR-100 w/o aug

0 5 10 15 20 25 30 35 40
Training time / epoch (sec)

w, varies through [10, 1, 0.1, 0.01, O] along each line




Our upcoming work...

* We will release Deep-n-Cheap as an autoML framework for people to freely
use to explore performance-complexity tradeoffs. (ETA: On Github in April)

* Existing frameworks like AutoKeras and AutoGluon are limited in the architectures
they search. For example, AutoGluon takes mins / epoch to try >50 layer networks on
CIFAR-10.

e Other existing frameworks like Auto-sklearn and Auto-PyTorch only support MLPs.



@

Dataset
Engineering

A family of synthetic datasets
of customizable difficulty for

- ML classitication problems



Synthetic Datasets on Morse Code Classification

» Inputs: Intensity values for dots, dashes and spaces in Morse codewords
» Outputs: The actual symbol represented by the codeword
» Added features to customize difficulty such as noise and dataset size

» Cheaply generate large quantities of data
1 0,1,0 2,0,1 0,0 0,2,1,0,...

Datasets for Machine Learning,” in ICCCNT 2018.
Won Best Paper award.
https://github.com/usc-hal/morse-dataset 13,12 13,9 11

v v

12,11,8,14,16,14,11 10,13,12,14,11

S. Dey, K. M. Chugg and P. A. Beerel, “Morse Code Ix FT f— fI T



https://github.com/usc-hal/morse-dataset

Team Members

Sourya Dey

Peter Beerel
Professor

Kuan-Wen Huang
PhD Student

Souvik Kundu
PhD Student

y Keith Chugg
4 Professor

Andrew Schmidt

;’ Saikrishna C. Kanala
MS Student

University of Southern California

Leana Golubchik
Professor

pt

Senior Computer Scientist, USC ISI

... and others

32



https://souryadey.github.io/

Thank youl!

I’ll graduate soon and plan to
conduct postdoctoral research



https://souryadey.github.io/

