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Overview

Neural networks (NNs) are key
machine learning technologies

» Artificial intelligence

» Self-driving cars

» Speech recognition

» Face ID

» and more smart stuff ...
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Motivation behind complexity reduction

Modern neural networks suffer from parameter explosion

Training can take weeks on CPU

Cloud GPU resources are expensive
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Reduce complexity of neural
networks with minimal
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Motivation behind pre-defined sparsity
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In a FC network, most weights are very small in magnitude after training
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Pre-defined Sparsity

Pre-define a sparse connection
pattern prior to training

Use this sparse network for both
training and inference

Reduced training
and inference
complexity
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Designing pre-defined sparse networks

A pre-defined sparse connection
pattern is a hyperparameter to
be set prior to training

Find trends and guidelines to
optimize pre-defined sparse patterns

S. Dey, K. Huang, P. A. Beerel and K. M. Chugg, "Pre-Defined
Sparse Neural Networks with Hardware Acceleration,"

in IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 2, pp. 332-345, June 20109.
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1. Individual junction densities
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more complicated representations => They need to be denser
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Results
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2. Dataset redundancy
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Results

Reducing redundancy leads

to increased performance
degradation on sparsification

Pre-defined sparse design is
problem-dependent
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3. ‘Large sparse’ vs ‘small dense’ networks

A sparser network with more ‘ ﬁ
hidden nodes will outperform

a denser network with less

hidden nodes, when both

have same number of weights

ern California 15
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Networks with same number of parameters go from

bad to good as #nodes in hidden layers is increased
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4. Regularization

Pre-defined sparse networks need
9 smaller A (as determined by validation)
C(w) = Co(w) + Afjw][;
l

100 % 1.1x 10*
40 % 5.5x 107

\ 4 . 11 % 0
Original unregularized

cost (like cross-entropy)

Regularized cost

Example for MNIST 2-junction networks

\ 4
Regularization term

Pre-defined sparsity reduces the
overfitting problem stemming from
over-parametrization in big networks

Sourya Dey University of Southern California 17



Applications and extensions of pre-defined sparsity

A hardware architecture for on-device training and
inference, prototype implemented on FPGA

S. Dey, Y. Shao, K. M. Chugg and P. A. Beerel, “Accelerating training of deep neural networks via sparse edge processing,”
in 26th International Conference on Artificial Neural Networks (ICANN) Part 1, pp. 273-280. Springer, Sep 2017.

Transferred to and currently being developed by team SAPIENT, in
collaboration with DTRA and USC Information Sciences Institute (ISI).

Wi | W | Wi
Sparsifying kernels / filters in convolutional layers

S. Kundu, M. Nazemi, M. Pedram, K. M. Chugg and P. A. Beerel, “Pre-defined Sparsity for W,y W, Wz
Low-Complexity Convolutional Neural Networks,” in IEEE Transactions on Computers, 2020.

Custom sparse libraries in software frameworks Wa | Wa | Wi

» torch.sparse — Experimental APl with room for improvement
» tensorflow.sparse

S. Dey, “Sparse Matrices in Pytorch,” in Towards Data Science, Medium publication, 2019.
https://towardsdatascience.com/sparse-matrices-in-pytorch-be8ecaccaeb

Sourya Dey University of Southern California 18
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Deep-n-Cheap

Automated search framework to
explore performance- compIeX|ty
tradeoffs in CNN design



Objective

Find networks which optimize performance
keeping in mind given complexity constraints

Loss function for search: f=f (Performance) + w_ *f (Complexity)

1 —val accuracy Wall clock time to
train per epoch

w. is like regularization

Good performance Quick to train

Slow to train Sacrifice performance
Slow search process

Sourya Dey University of Southern California 20



The optimization problem for f

Performance and complexity are both functions of overall config:
» Discrete architecture hyperparameters (#layers, type of layer, ...), AND
» Continuous training hyperparameters (learning rate, weight decay, ...)

Example: x; = (10 conv layers, 6 batchnorm layers, Ir=103, weight_decay=10-)

Approaches:

» Bayesian optimization
» Grid search

Sourya Dey University of Southern California 21



Bayesian optimization

Sample f(:) for n initial configs and model via a Gaussian process

k(xy,x1) - k(xi,x,)
f(Xlzn) NN( | V7 > ) > = . Covariance :
nxl NMXn kernel k
-k(wn7 L1) - K(wna wn)_

Calculate expected improvement for new configs

El (phew) =(f"—pn) P (f* — ,u> op <f* — M) Expensive f

1 l o | 4 evaluations

N(0,1 N(0,1 o
Clé::tnt ((;?jf ) (pdf) are minimized

Sourya Dey University of Southern California 22




Designing the ‘ramp’ kernel function

Distance d (xl, wg)

Kernel k (3317 x2)

Example: batch size
Given: /=32 <= batch_size <= y=512

X1=200,X2=100,w=3,l’=1

=>k =0.82

Sourya Dey

(e =22\
= W

u —
_ o—d7/2

Kernel values for each search
parameter are combined to get
overall kernel between 2 configs

University of Southern California
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Search framework

» Step 1 — Core architecture using Bayesian optimization

» Number of convolutional layers
» Number of filters in each

} Combined space

» Step 2 — Remaining architecture using grid search

1. Strides vs max pooling

2. Batch normalization locations

3. Dropout locations and probabilities
4. Shortcut connections

\

Sequential, but
> order can be

-

interchanged

» Step 3 — Training hyperparameters using Bayesian optimization

» Initial learning rate
» Weight decay Combined space

> Batch size

Sourya Dey University of Southern California
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Effect of w,
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Performance - Complexity Tradeoft

Dot size « Search time
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Transter learning to CIFAR-100

Given a search process optimized for dataset A, how do the best configs perform on dataset B?

In other words, how do they compare with configs from a separate search optimized for B?
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Our upcoming work...

* We will release Deep-n-Cheap as an autoML framework for people to freely
use to explore performance-complexity tradeoffs. (ETA: On Github in April)

* Existing frameworks like AutoKeras and AutoGluon are limited in the architectures
they search. For example, AutoGluon takes mins / epoch to try >50 layer networks on
CIFAR-10.

e Other existing frameworks like Auto-sklearn and Auto-PyTorch only support MLPs.
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Dataset
Engineering

A family of synthetic datasets
of customizable difficulty for

- ML classitication problems



Synthetic Datasets on Morse Code Classification

» Inputs: Intensity values for dots, dashes and spaces in Morse codewords
» Outputs: The actual symbol represented by the codeword
» Added features to customize difficulty such as noise and dataset size

» Cheaply generate large quantities of data
1 0,1,0 2,0,1 0,0 0,2,1,0,...

Datasets for Machine Learning,” in ICCCNT 2018.
Won Best Paper award.
https://github.com/usc-hal/morse-dataset 13,12 13,9 11

v v

12,11,8,14,16,14,11 10,13,12,14,11

S. Dey, K. M. Chugg and P. A. Beerel, “Morse Code Ix FT f— fI T



https://github.com/usc-hal/morse-dataset
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https://souryadey.github.io/

Thank youl!

I’ll graduate soon and plan to
conduct postdoctoral research
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