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Overview

Neural	networks	(NNs)	are	key	
machine	learning	technologies	

➢ Artificial	intelligence	
➢ Self-driving	cars	
➢ Speech	recognition	
➢ Face	ID	
➢ and	more	smart	stuff	…
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The Complexity Conundrum…

Training	can	take	weeks	on	CPU	
Cloud	GPU	resources	are	expensive

Modern	neural	networks	suffer	from	parameter	explosion

He	2016



Architecture 
Hyperparameters

Training 
Hyperparameters

• Deep	neural	networks	have	a	lot	of	hyperparameters	
• How	many	layers?	
• How	many	neurons?	
• Learning	rate	
• Batch	size	
• and	more…	

• Our	understanding	of	NNs	is	at	best	vague,	at	worst,	zero!

… and the Design Conundrum
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AutoML (Automated Machine Learning)

• Software	frameworks	that	make	design	decisions	
• Given	problem	specifications,	search	for	NN	models
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Jin	2019	–	Auto-Keras AWsLabs	2020	–	AutoGluon

Mendoza	2018	–	Auto-PyTorch



Our Work
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ttr	=	Training	time	/	epoch 
Np	=	#	Trainable	parameters

Reduce	training	complexity 

Target	custom	datasets	and	
user	requirements	 

Output	complete	training	
configs
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Relevant Details
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• Development	started	in	July	2019 
• Supports	Pytorch	
• Supports	classification	via	CNNs	and	MLPs 

• Latest	/	ongoing	work: 
• Support	for	Keras	
• Regression 
• Detection	/	segmentation 
• RNNs

S.	Dey,	S.	C.	Kanala,	K.	M.	Chugg	and	P.	A.	
Beerel,	“Deep-n-Cheap:	An	Automated	Search	
Framework	for	Low	Complexity	Deep	
Learning”,	submitted	to	ACML	2020.

https://arxiv.org/abs/2004.00974

https://arxiv.org/abs/2004.00974


Approach
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wc

Search Objective

Optimize	performance	and	complexity

Modified	loss	function:	f(	NN	Config	x	)	=	log(	fp	+	wc*fc	)

Good	performance	
Slow	to	train	

Slow	search	process

Quick	to	train	
Sacrifice	performance

wc	is	like	
regularization
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fp	=	1	-	(Best	Validation	Accuracy) 
fc	=	Normalized	ttr	or	Np 
				=	ttr(config)	/	ttr(baseline)

Example	config	x: 
[#layers,	#channels]	=	[3,	(29,40,77)]



Three-stage search process



Three-stage search process



Three-stage search process
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Bayesian Optimization – Gaussian process
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Covariance kernel – 
Similarity between NN 
configs

Individual 
Distance

Individual 
Kernel

Complete 
Kernel

�17



Covariance kernel – 
Similarity between NN 
configs
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Covariance kernel – 
Similarity between NN 
configs
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Results



CNN Results

Performance- 
complexity 
tradeoff

Complexity	Penalty	= 
Training	time	/	epoch

We are not penalizing 
this, but it’s correlated

AWS	p3.2xlarge	
with	1	V100	GPU
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Input	at	top,	
output	at	bottom

wc 0 0.01 0.1 1 10

Initial learning rate η 0.001 0.001 0.001 0.003 0.001

Weight decay λ 3.3 x 10-5 8.3 x 10-5 1.2 x 10-5 0 0

Batch size 120 256 459 452 256

λ	strictly	correlated	with	Np



Pink	dots: 
Complexity	Penalty	= 
Training	time	/	epoch

Black	crosses: 
Complexity	Penalty	= 
#	Trainable	Params

MLP Results

CPU	=	Macbook	Pro	with	
8GB	RAM,	no	CuDA	
GPU	=	(Same)	AWS	
p3.2xlarge	with	V100



Comparison (CNNs on CIFAR-10)

Auto	Keras	and	Gluon	don’t	support	getting	
final	model	out,	so	we	compared	on	best	val	acc	
found	during	search	instead	of	final	test	acc

Penalizes	inference	
complexity,	not	training



Comparison (MLPs)
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Takeaway
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We	may	not	need	
very	deep	networks!

Also	see	Zagoruyko	2016	–	WRN



Thank you!  
 

Q&A ??

https://souryadey.github.io/

https://souryadey.github.io/

