

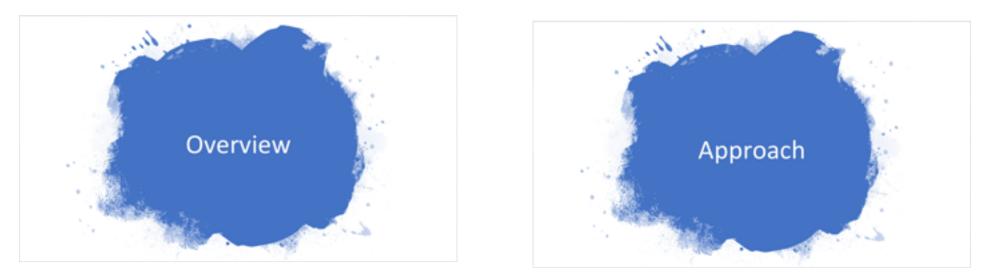
Deep-n-Cheap

An Automated Search Framework for Low Complexity Deep Learning

Sourya Dey PhD, University of Southern California

June 20th, 2020

Outline



Overview

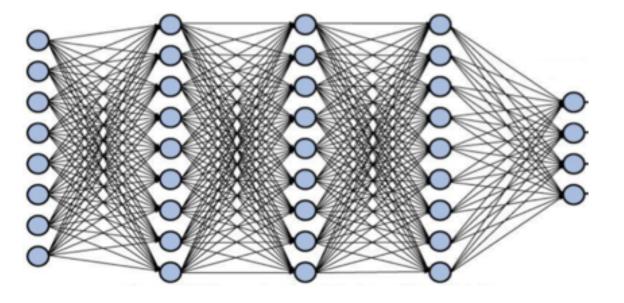
Overview

Neural networks (NNs) are key machine learning technologies

- ➤ Artificial intelligence
- ➤ Self-driving cars
- > Speech recognition
- ≻ Face ID
- \succ and more smart stuff ...

The Complexity Conundrum...

Modern neural networks suffer from parameter explosion

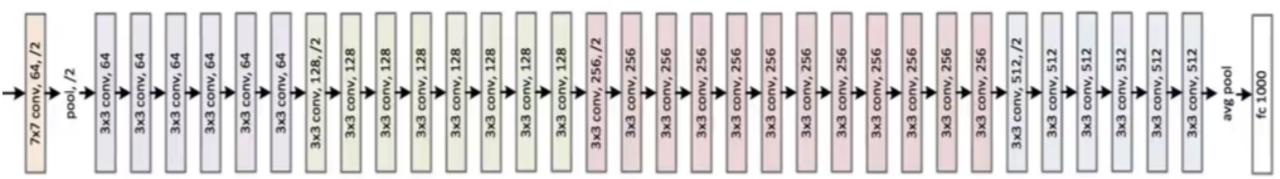


He 2016

Training can take weeks on CPU

Cloud GPU resources are expensive

Google Cloud Platform



... and the Design Conundrum

- Deep neural networks have a lot of **hyperparameters**
 - How many layers? Architecture
 How many neurons? Hyperparameters
 Learning rate Training
 Batch size Hyperparameters
 and more...

• Our understanding of NNs is at best vague, at worst, zero!

AutoML (Automated Machine Learning)

- Software frameworks that make design decisions
- Given problem specifications, **search** for NN models

Jin 2019 – Auto-Keras

Mendoza 2018 – Auto-PyTorch

Our Work

Low Complexity AutoML framework

Reduce training complexity

Target custom datasets and user requirements

Output complete training configs

Framework	Architecture search space	Training	Adjust model	
Framework	Architecture search space	hyp search	$\operatorname{complexity}$	
Auto-Keras	Only pre-existing architectures	No	No	
AutoGluon	Only pre-existing architectures	Yes	No	
Auto-PyTorch	Customizable by user	Yes	No	t _{+r} = Tra
Deep-n-Cheap	Customizable by user	Yes	No Penalize $t_{\rm tr}, N_p$	$N_{p} = #7$

 t_{tr} = Training time / epoch N_p = # Trainable parameters

Relevant Details

- Development started in July 2019
- Supports Pytorch
- Supports classification via CNNs and MLPs
- Latest / ongoing work:
 - Support for Keras
 - Regression
 - Detection / segmentation
 - RNNs

S. Dey, S. C. Kanala, K. M. Chugg and P. A. Beerel, "Deep-n-Cheap: An Automated Search Framework for Low Complexity Deep Learning", submitted to ACML 2020.

https://arxiv.org/abs/2004.00974

Approach

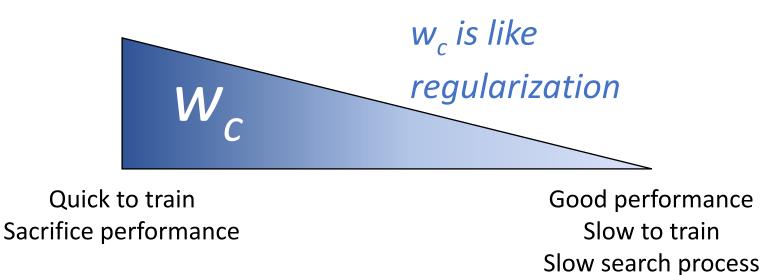
Search Objective

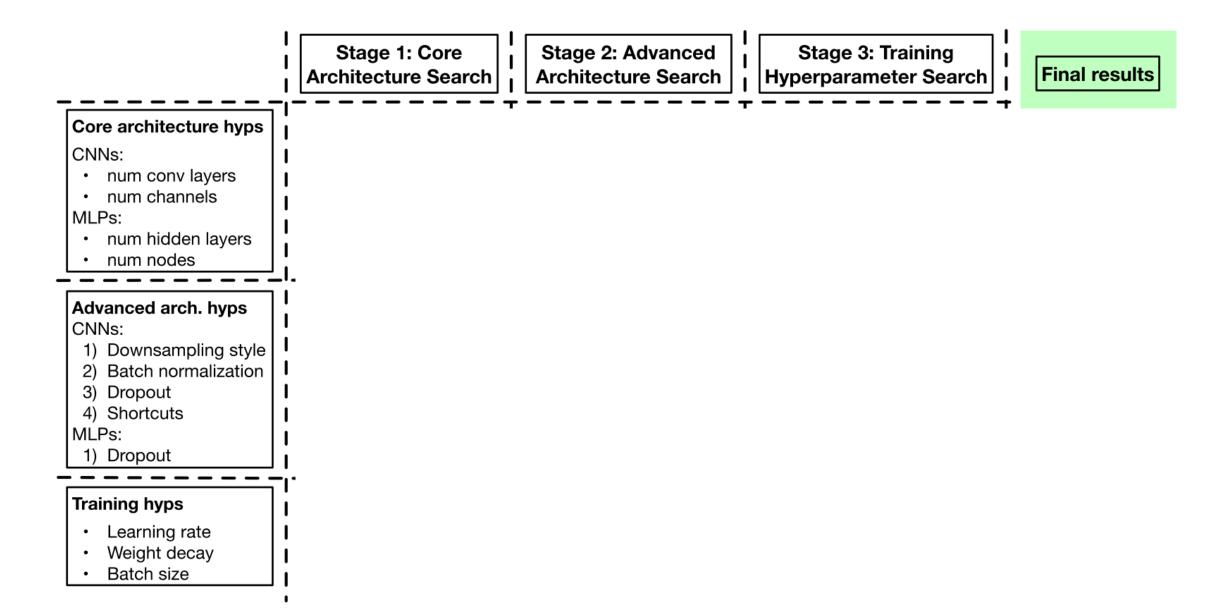
Optimize performance and complexity

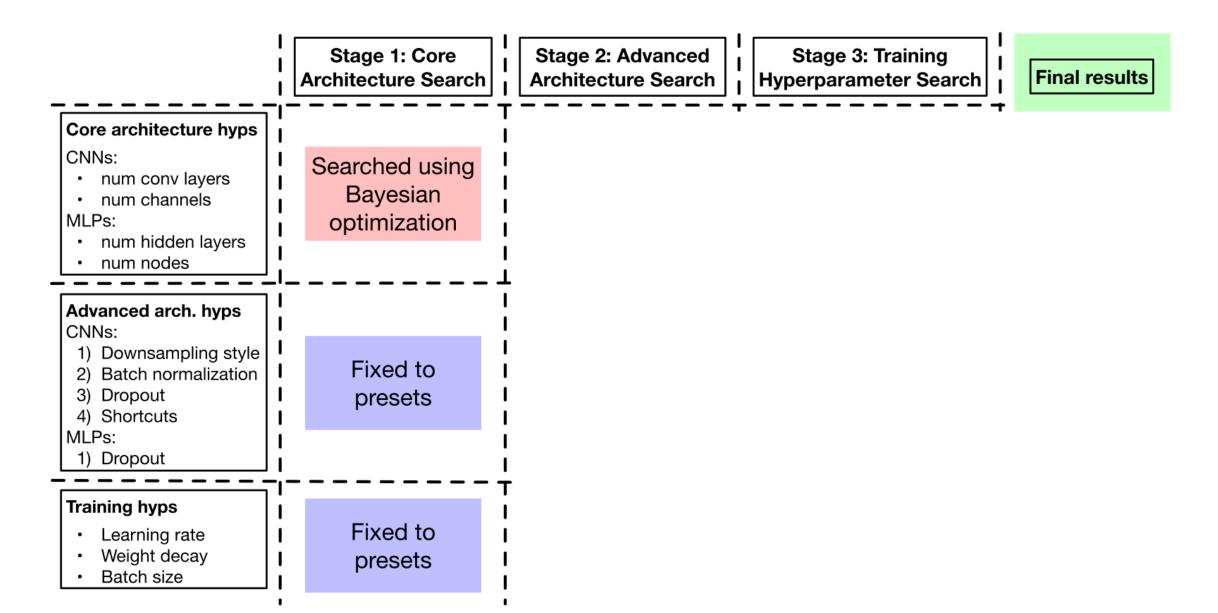
Modified loss function: $f(NN Config \mathbf{x}) = \log(f_p + w_c^* f_c)$

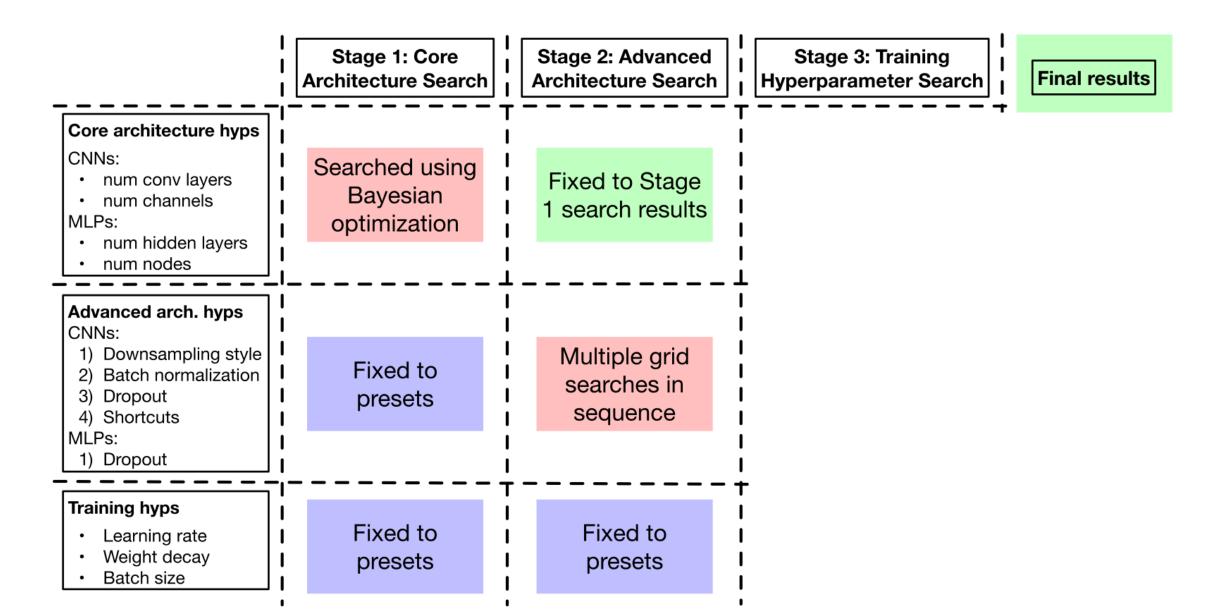
Example config **x**: [#layers, #channels] = [3, (29,40,77)]

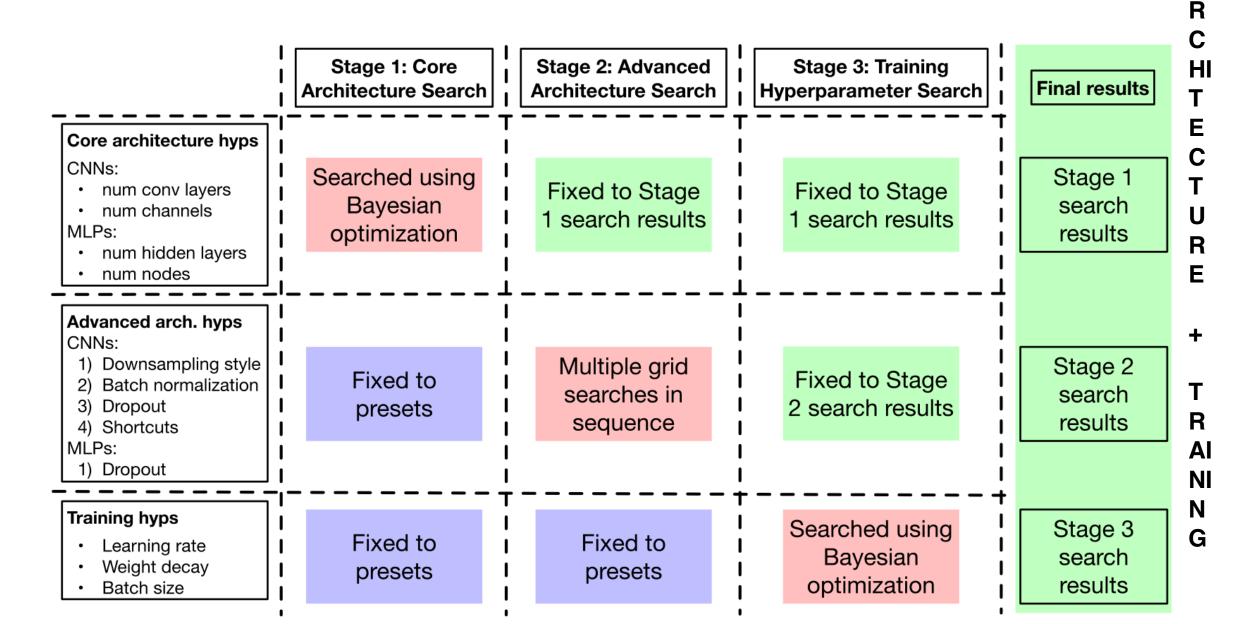
$$\begin{split} f_{\rho} &= 1 - (\text{Best Validation Accuracy}) \\ f_{c} &= \text{Normalized } t_{tr} \text{ or } \text{N}_{\rho} \\ &= \text{t}_{tr}(\text{config}) \ / \ \text{t}_{tr}(\text{baseline}) \end{split}$$











Α

Bayesian Optimization – Gaussian process

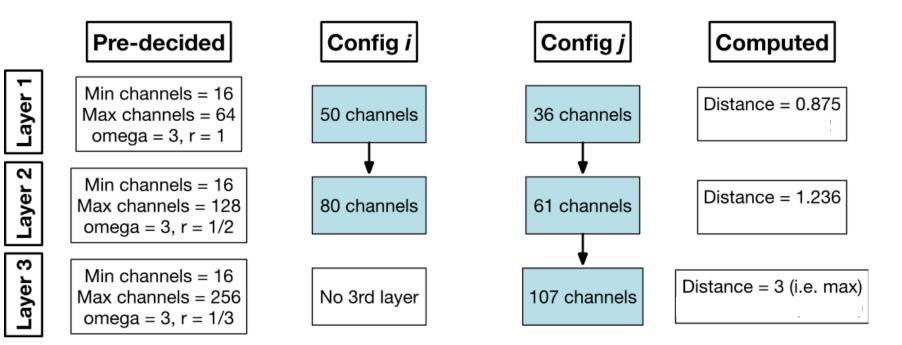
$$f(\boldsymbol{X}_{1:n}) \sim \mathcal{N}\left(\boldsymbol{\mu}_{n \times 1}, \boldsymbol{\Sigma}_{n \times n}\right)$$

 $oldsymbol{\mu} = egin{bmatrix} \mu\left(oldsymbol{x}_1
ight) \ dots \ \mu\left(oldsymbol{x}_n
ight) \end{bmatrix}$

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma \left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1} \right) & \cdots & \sigma \left(\boldsymbol{x}_{1}, \boldsymbol{x}_{n} \right) \\ \vdots & \ddots & \vdots \\ \sigma \left(\boldsymbol{x}_{n}, \boldsymbol{x}_{1} \right) & \cdots & \sigma \left(\boldsymbol{x}_{n}, \boldsymbol{x}_{n} \right) \end{bmatrix}$$

Covariance kernel – Similarity between NN configs

$$d(x_{ik}, x_{jk}) = \omega_k \left(\frac{|x_{ik} - x_{jk}|}{u_k - l_k}\right)^{r_k}$$



Individual

Distance

Covariance kernel – Similarity between NN configs

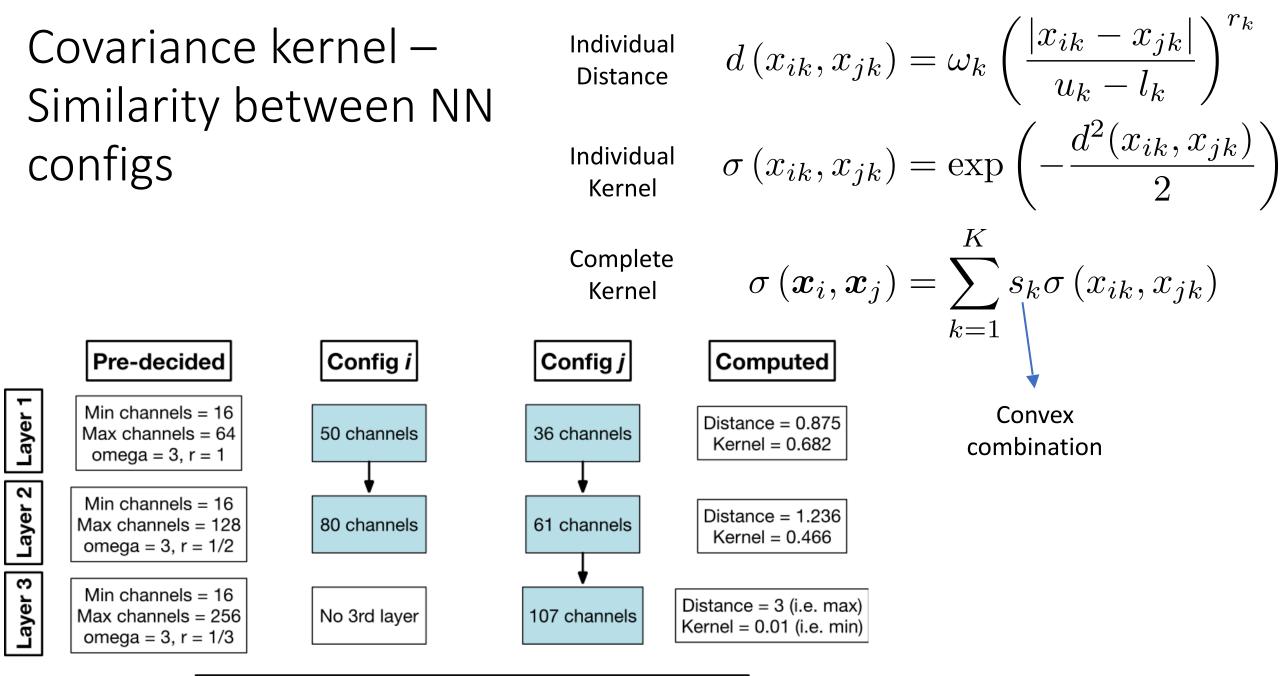
Individual Distance

$$d(x_{ik}, x_{jk}) = \omega_k \left(\frac{|x_{ik} - x_{jk}|}{u_k - l_k}\right)^{r_k}$$
$$\sigma(x_{ik}, x_{jk}) = \exp\left(-\frac{d^2(x_{ik}, x_{jk})}{2}\right)$$

Individual Kernel

Pre-decidedConfig
$$i$$
Config j ComputedImage: Second structureMin channels = 16
Max channels = 64
omega = 3, r = 150 channels36 channelsDistance = 0.875
Kernel = 0.682Image: Second structureMin channels = 16
Max channels = 128
omega = 3, r = 1/2S0 channels61 channelsDistance = 1.236
Kernel = 0.466Image: Second structureMin channels = 16
Max channels = 256
omega = 3, r = 1/3No 3rd layer107 channelsDistance = 3 (i.e. max)
Kernel = 0.01 (i.e. min)

2



Assuming all {s} are equal, final kernel value = 0.386

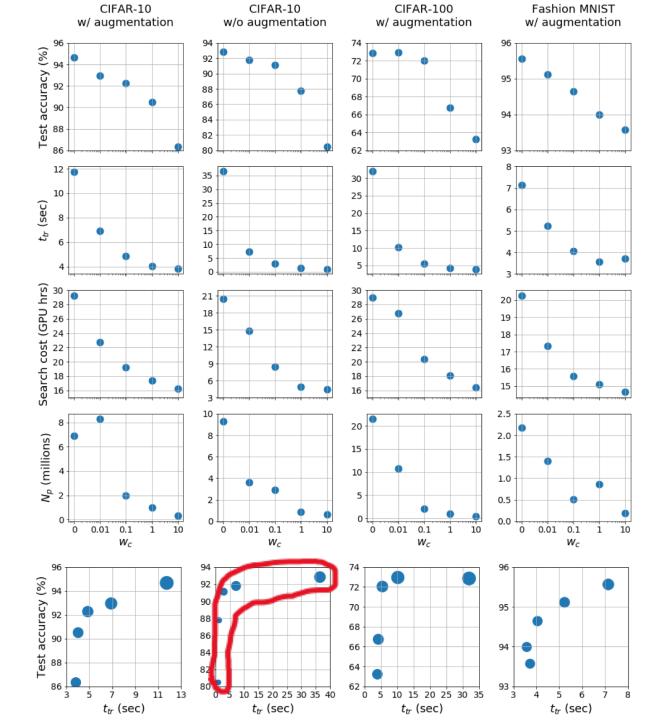
CNN Results

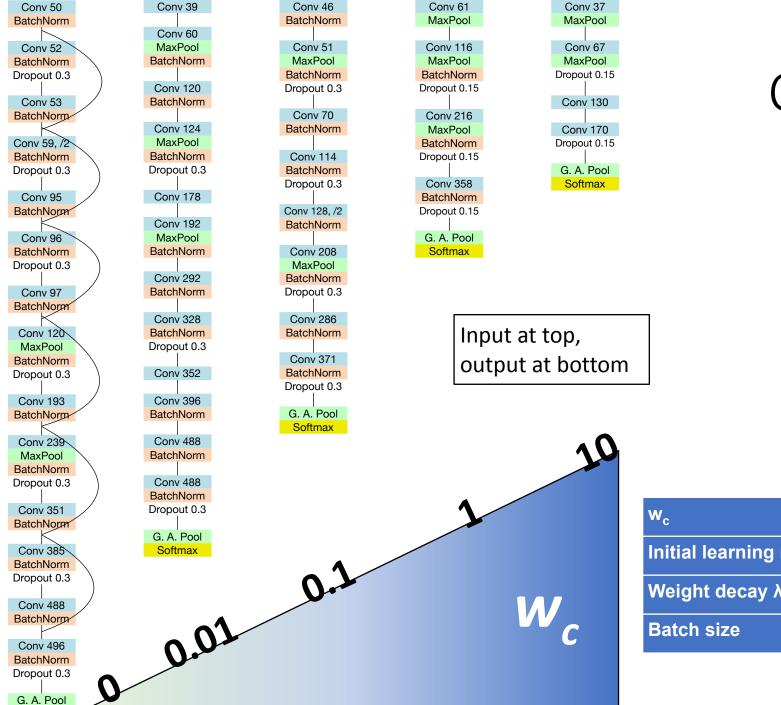
Complexity Penalty = Training time / epoch

> AWS p3.2xlarge with 1 V100 GPU

We are not penalizing this, but it's correlated

Performancecomplexity tradeoff





Softmax

CIFAR-10 w/ aug



w _c	0	0.01	0.1	1	10
Initial learning rate η	0.001	0.001	0.001	0.003	0.001
Weight decay λ	3.3 x 10⁻⁵	8.3 x 10 ⁻⁵	1.2 x 10⁻⁵	0	0
Batch size	120	256	459	452	256

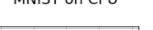
 λ strictly correlated with N_p

MLP Results

Pink dots: *Complexity Penalty =* Training time / epoch

Black crosses: *Complexity Penalty =* # Trainable Params

CPU = Macbook Pro with 8GB RAM, no CuDA GPU = (Same) AWS p3.2xlarge with V100



Fashion MNIST on CPU

Reuters RCV1 on GPU

×

× 😞

91.4 🗙

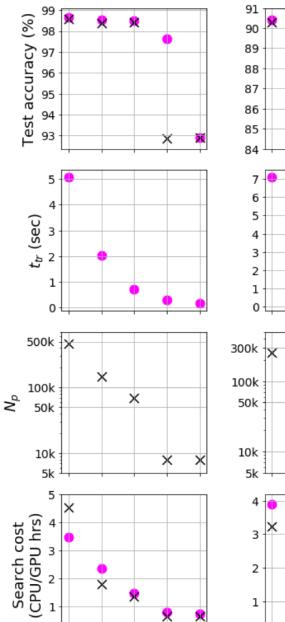
91.2

91.0

90.8

90.6

90.4



х

 W_c

0.01 0.1

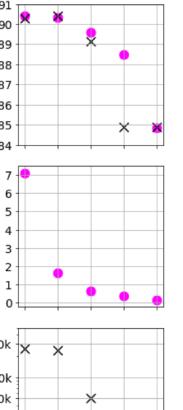
0

0

X

1

10



х

х

0.01

1

0

0

х

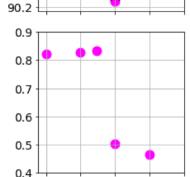
0.1

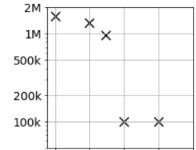
 W_c

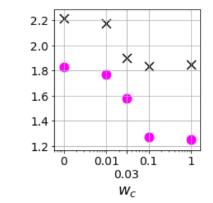
х

10

1







MNIST on CPU

Comparison (CNNs on CIFAR-10)

Framework	Additional	Search cost	Best model found from search			
Framework	settings	(GPU hrs)	Architecture	$t_{ m tr}~(m sec)$	Batch size	Best val acc $(\%)$
Proxyless NAS	Proxyless-G	96	537 conv layers	429	64	93.22
Auto-Keras	Default run	14.33	Resnet-20 v2	33	32	74.89
AutoGluon	Default run	3	Resnet-20 v1	37	64	88.6
	Extended run	101	Resnet-56 v1	46	64	91.22
Auto-Pytorch	'tiny cs'	6.17	30 conv layers	39	64	87.81
	'full cs'	6.13	41 conv layers	31	106	86.37
Deep-n-Cheap	$w_c = 0$	29.17	14 conv layers	10	120	93.74
	$w_c = 0.1$	19.23	8 conv layers	4	459	91.89
	$w_c = 10$	16.23	4 conv layers	3	256	83.82

Penalizes inference complexity, <u>not</u> training

Auto Keras and Gluon don't support getting final model out, so we compared on best val accfound during search instead of final test acc

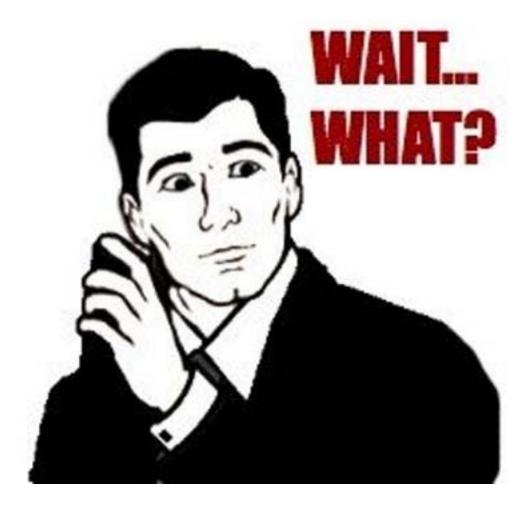
Comparison (MLPs)

Framework	Additional	Search cost	Best model found from search					
Tamework	settings	(GPU hrs)	MLP layers	N_p	$t_{ m tr}~(m sec)$	Batch size	Best val acc (%)	
Fashion MNIST								
Auto-Pytorch	'tiny cs'	6.76	50	27.8M	19.2	125	91	
	'medium cs'	5.53	20	$3.5\mathrm{M}$	8.3	184	90.52	
	'full cs'	6.63	12	122k	5.4	173	90.61	
Deep-n-Cheap	$w_c = 0$	0.52	3	263k	0.4	272	90.24	
(penalize $t_{\rm tr}$)	$w_c = 10$	0.3	1	7.9 k	0.1	511	84.39	
Deep-n-Cheap	$w_c = 0$	0.44	2	317k	0.5	153	90.53	
(penalize N_p)	$w_c = 10$	0.4	1	7.9 k	0.2	256	86.06	
	Reuters RCV1							
Auto-Pytorch	'tiny cs'	7.22	38	19.7M	39.6	125	88.91	
	'medium cs'	6.47	11	11.2M	22.3	337	90.77	
Deep-n-Cheap	$w_c = 0$	1.83	2	1.32M	0.7	503	91.36	
(penalize $t_{\rm tr}$)	$w_c = 1$	1.25	1	100k	0.4	512	90.34	
Deep-n-Cheap	$w_c = 0$	2.22	2	1.6M	0.6	512	91.36	
(penalize N_p)	$w_c = 1$	1.85	1	100k	5.54	33	90.4	

Takeaway

We may not need very deep networks!

Also see Zagoruyko 2016 – WRN



Thank you!

Q&A ??

https://souryadey.github.io/

