
Deep-n-Cheap  
 
An	Automated	Search	Framework	
for	Low	Complexity	Deep	Learning

Sourya	Dey	
PhD,	University	of	Southern	California	

June	20th,	2020

Outline

Overview

University	of	Southern	California

Overview

Neural	networks	(NNs)	are	key	
machine	learning	technologies	

➢ Artificial	intelligence	
➢ Self-driving	cars	
➢ Speech	recognition	
➢ Face	ID	
➢ and	more	smart	stuff	…

Sourya	Dey �4

The Complexity Conundrum…

Training	can	take	weeks	on	CPU	
Cloud	GPU	resources	are	expensive

Modern	neural	networks	suffer	from	parameter	explosion

He	2016

Architecture
Hyperparameters

Training
Hyperparameters

• Deep	neural	networks	have	a	lot	of	hyperparameters	
• How	many	layers?	
• How	many	neurons?	
• Learning	rate	
• Batch	size	
• and	more…	

• Our	understanding	of	NNs	is	at	best	vague,	at	worst,	zero!

… and the Design Conundrum

Sourya	Dey University	of	Southern	California �6

AutoML (Automated Machine Learning)

• Software	frameworks	that	make	design	decisions	
• Given	problem	specifications,	search	for	NN	models

�7

Jin	2019	–	Auto-Keras AWsLabs	2020	–	AutoGluon

Mendoza	2018	–	Auto-PyTorch

Our Work

�8

ttr	=	Training	time	/	epoch
Np	=	#	Trainable	parameters

Reduce	training	complexity

Target	custom	datasets	and	
user	requirements	

Output	complete	training	
configs

University	of	Southern	California

Relevant Details

Sourya	Dey �9

• Development	started	in	July	2019
• Supports	Pytorch	
• Supports	classification	via	CNNs	and	MLPs

• Latest	/	ongoing	work:
• Support	for	Keras	
• Regression
• Detection	/	segmentation
• RNNs

S.	Dey,	S.	C.	Kanala,	K.	M.	Chugg	and	P.	A.	
Beerel,	“Deep-n-Cheap:	An	Automated	Search	
Framework	for	Low	Complexity	Deep	
Learning”,	submitted	to	ACML	2020.

https://arxiv.org/abs/2004.00974

https://arxiv.org/abs/2004.00974

Approach

University	of	Southern	California

wc

Search Objective

Optimize	performance	and	complexity

Modified	loss	function:	f(NN	Config	x)	=	log(fp	+	wc*fc)

Good	performance	
Slow	to	train	

Slow	search	process

Quick	to	train	
Sacrifice	performance

wc	is	like	
regularization

Sourya	Dey �11

fp	=	1	-	(Best	Validation	Accuracy)
fc	=	Normalized	ttr	or	Np
				=	ttr(config)	/	ttr(baseline)

Example	config	x:
[#layers,	#channels]	=	[3,	(29,40,77)]

Three-stage search process

Three-stage search process

Three-stage search process

Three-stage search process A
R
C
HI
T
E
C
T
U
R
E

+

T
R
AI
NI
N
G

University	of	Southern	California

Bayesian Optimization – Gaussian process

Sourya	Dey �16

Covariance kernel –
Similarity between NN
configs

Individual
Distance

Individual
Kernel

Complete
Kernel

�17

Covariance kernel –
Similarity between NN
configs

Individual
Distance

Individual
Kernel

Complete
Kernel

�18

Covariance kernel –
Similarity between NN
configs

Individual
Distance

Individual
Kernel

Complete
Kernel

Convex	
combination

�19

Results

CNN Results

Performance-
complexity
tradeoff

Complexity	Penalty	=
Training	time	/	epoch

We are not penalizing
this, but it’s correlated

AWS	p3.2xlarge	
with	1	V100	GPU

Conv 50
BatchNorm

Conv 52
BatchNorm
Dropout 0.3

Conv 53
BatchNorm

Conv 59, /2
BatchNorm
Dropout 0.3

Conv 95
BatchNorm

Conv 96
BatchNorm
Dropout 0.3

Conv 97
BatchNorm

Conv 120
MaxPool

BatchNorm
Dropout 0.3

Conv 193
BatchNorm

Conv 239
MaxPool

BatchNorm
Dropout 0.3

Conv 351
BatchNorm

Conv 385
BatchNorm
Dropout 0.3

Conv 488
BatchNorm

Conv 496
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

Conv 39

Conv 60
MaxPool

BatchNorm

Conv 120
BatchNorm

Conv 124

BatchNorm
Dropout 0.3

Conv 178

Conv 192
MaxPool

BatchNorm

Conv 292
BatchNorm

Conv 328
BatchNorm
Dropout 0.3

Conv 352

Conv 396
BatchNorm

Conv 488
BatchNorm

Conv 488
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

MaxPool

Conv 46

Conv 51

BatchNorm
Dropout 0.3

Conv 70

Conv 114
BatchNorm
Dropout 0.3

Conv 128, /2
BatchNorm

Conv 208

BatchNorm
Dropout 0.3

Conv 286
BatchNorm

Conv 371
BatchNorm
Dropout 0.3

G. A. Pool
Softmax

MaxPool

BatchNorm

BatchNorm

MaxPool

Conv 116

BatchNorm
Dropout 0.15

MaxPool

Conv 61
MaxPool

Conv 358

Dropout 0.15
BatchNorm

Conv 216

BatchNorm
Dropout 0.15

MaxPool

G. A. Pool
Softmax

Conv 67

Dropout 0.15
MaxPool

Conv 37
MaxPool

Conv 130

G. A. Pool
Softmax

Conv 170
Dropout 0.15

CIFAR-10 w/ aug

0
0.01

0.1
1

10

wc

Input	at	top,	
output	at	bottom

wc 0 0.01 0.1 1 10

Initial learning rate η 0.001 0.001 0.001 0.003 0.001

Weight decay λ 3.3 x 10-5 8.3 x 10-5 1.2 x 10-5 0 0

Batch size 120 256 459 452 256

λ	strictly	correlated	with	Np

Pink	dots:
Complexity	Penalty	=
Training	time	/	epoch

Black	crosses:
Complexity	Penalty	=
#	Trainable	Params

MLP Results

CPU	=	Macbook	Pro	with	
8GB	RAM,	no	CuDA	
GPU	=	(Same)	AWS	
p3.2xlarge	with	V100

Comparison (CNNs on CIFAR-10)

Auto	Keras	and	Gluon	don’t	support	getting	
final	model	out,	so	we	compared	on	best	val	acc	
found	during	search	instead	of	final	test	acc

Penalizes	inference	
complexity,	not	training

Comparison (MLPs)

University	of	Southern	California

Takeaway

Sourya	Dey �26

We	may	not	need	
very	deep	networks!

Also	see	Zagoruyko	2016	–	WRN

Thank you!  
 

Q&A ??

https://souryadey.github.io/

https://souryadey.github.io/

