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1 Notation

• Scalars are written as lower case letters.

• Vectors are written as lower case bold letters, such as x, and can be either row (dimensions
1×n) or column (dimensions n×1). Column vectors are the default choice, unless otherwise
mentioned. Individual elements are indexed by subscripts, such as xi (i ∈ {1, · · · , n}).

• Matrices are written as upper case bold letters, such as X, and have dimensions m × n
corresponding to m rows and n columns. Individual elements are indexed by double
subscripts for row and column, such as Xij (i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}).

• Occasionally higher order tensors occur, such as 3rd order with dimensions m×n×p, etc.

Note that a matrix is a 2nd order tensor. A row vector is a matrix with 1 row, and a column
vector is a matrix with 1 column. A scalar is a matrix with 1 row and 1 column. Essentially,
scalars and vectors are special cases of matrices.

The derivative of f with respect to x is
∂f

∂x
. Both x and f can be a scalar, vector, or matrix,

leading to 9 types of derivatives. The gradient of f w.r.t x is ∇xf =

(
∂f

∂x

)T

, i.e. gradient

is transpose of derivative. The gradient at any point x0 in the domain has a physical
interpretation, its direction is the direction of maximum increase of the function f at the point
x0, and its magnitude is the rate of increase in that direction. We do not generally deal with
the gradient when x is a scalar.

2 Basic Rules

This document follows numerator layout convention. There is an alternative denom-
inator layout convention, where several results are transposed. Do not mix different layout
conventions.

We’ll first state the most general matrix-matrix derivative type. All other types are sim-
plifications since scalars and vectors are special cases of matrices. Consider a function F (·)
which maps m × n matrices to p × q matrices, i.e. domain ⊂ Rm×n and range ⊂ Rp×q. So,

F (·) : X
m×n

→ F (X)
p×q

. Its derivative
∂F

∂X
is a 4th order tensor of dimensions p× q×n×m. This

is an outer matrix of dimensions n ×m (transposed dimensions of the denominator X), with
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each element being a p× q inner matrix (same dimensions as the numerator F ). It is given as:

∂F

∂X
=



∂F

∂X1,1
· · · ∂F

∂Xm,1

...
. . .

...

∂F

∂X1,n
· · · ∂F

∂Xm,n


(1a)

which has n rows and m columns, and the (i, j)th element is given as:

∂F

∂Xi,j
=



∂F1,1

∂Xi,j
· · · ∂F1,q

∂Xi,j

...
. . .

...

∂Fp,1

∂Xi,j
· · · ∂Fp,q

∂Xi,j


(1b)

which has p rows and q columns.

Whew! Now that that’s out of the way, let’s get to some general rules (for the following, x and
y can represent scalar, vector or matrix):

• The derivative
∂y

∂x
always has outer matrix dimensions = transposed dimen-

sions of denominator x, and each individual element (inner matrix) has di-
mensions = same dimensions of numerator y. If you do a calculation and the
dimension doesn’t come out right, the answer is not correct.

• Derivatives usually obey the chain rule, i.e.
∂f (g(x))

∂x
=

∂f (g(x))

∂g(x)

∂g(x)

∂x
.

• Derivatives usually obey the product rule, i.e.
∂f(x)g(x)

∂x
= f(x)

∂g(x)

∂x
+ g(x)

∂f(x)

∂x
.

3 Types of derivatives

3.1 Scalar by scalar

Nothing special here. The derivative is a scalar, and can also be written as f ′(x). For example,
if f(x) = sinx, then f ′(x) = cosx.

3.2 Scalar by vector

f(·) : x
m×1

→ f(x)
1×1

. For this, the derivative is a 1×m row vector:

∂f

∂x
=

[
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xm

]
(2)

The gradient ∇xf is its transposed column vector.
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3.3 Vector by scalar

f(·) : x
1×1
→ f(x)

n×1
. For this, the derivative is a n× 1 column vector:

∂f

∂x
=



∂f1
∂x

∂f2
∂x

...

∂fn
∂x


(3)

3.4 Vector by vector

f(·) : x
m×1

→ f(x)
n×1

. Derivative, also known as the Jacobian, is a matrix of dimensions n×m.

Its (i, j)th element is the scalar derivative of the ith output component w.r.t the jth input
component, i.e.:

∂f

∂x
=



∂f1
∂x1

· · · ∂f1
∂xm

...
. . .

...

∂fn
∂x1

· · · ∂fn
∂xm


(4)

3.4.1 Special case – Vectorized scalar function

This is a scalar-scalar function applied element-wise to a vector, and is denoted by f(·) : x
m×1

→
f(x)
m×1

. For example:

f



x1

x2

...
xm


 =


f (x1)
f (x2)

...
f (xm)

 (5)

In this case, both the derivative and gradient are the same m×m diagonal matrix, given as:

∇xf =
∂f

∂x
=



f ′ (x1) 0
f ′ (x2)

. . .

0 f ′ (xm)


(6)

where f ′ (xi) =
∂f (xi)

∂xi
.
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Note: Some texts take the derivative of a vectorized scalar function by taking element-wise
derivatives to get a m× 1 vector. To avoid confusion with (6), we will refer to this as f ′(x).

f ′(x) =


f ′ (x1)
f ′ (x2)

...
f ′ (xm)

 (7)

To realize the effect of this, let’s say we want to multiply the gradient from (6) with some
m-dimensional vector a. This would result in:

(
∇xf

)
a =


f ′ (x1) a1

f ′ (x2) a2

...

f ′ (xm) am

 (8)

Achieving the same result with f ′(x) from (7) would require the Hadamard product ◦, defined
as element-wise multiplication of 2 vectors:

f ′(x) ◦ a =


f ′ (x1) a1

f ′ (x2) a2

...

f ′ (xm) am

 (9)

3.4.2 Special Case – Hessian

Consider the type of function in Sec. 3.2, i.e. f(·) : x
m×1

→ f(x)
1×1

. Its gradient is a vector-

to-vector function given as ∇xf(·) : x
m×1

→ ∇xf(x)
m×1

. The transpose of its derivative is the

Hessian:

H =



∂2f

∂x2
1

· · · ∂2f

∂x1∂xm

...
. . .

...

∂2f

∂xm∂x1
· · · ∂2f

∂x2
m


(10)

i.e. H =

(
∂∇xf

∂x

)T

. If derivatives are continuous, then
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
, so the Hessian is

symmetric.
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3.5 Scalar by matrix

f(·) : X
m×n

→ f(X)
1×1

. In this case, the derivative is a n×m matrix:

∂f

∂X
=



∂f

∂X1,1
· · · ∂f

∂Xm,1

...
. . .

...

∂f

∂X1,n
· · · ∂f

∂Xm,n


(11)

The gradient has the same dimensions as the input matrix, i.e. m× n.

3.6 Matrix by scalar

f(·) : x
1×1
→ F (x)

p×q
. In this case, the derivative is a p× q matrix:

∂F

∂x
=



∂F1,1

∂x
· · · ∂F1,q

∂x

...
. . .

...

∂Fp,1

∂x
· · · ∂Fp,q

∂x

 (12)

3.7 Vector by matrix

f(·) : X
m×n

→ f(X)
p×1

. In this case, the derivative is a 3rd-order tensor with dimensions p×n×m.

This is the same n×m matrix in (11), but with f replaced by the p-dimensional vector f , i.e.:

∂f

∂X
=


∂f

∂X1,1
· · · ∂f

∂Xm,1
...

. . .
...

∂f

∂X1,n
· · · ∂f

∂Xm,n

 (13)

3.8 Matrix by vector

F (·) : x
m×1

→ F (x)
p×q

. In this case, the derivative is a 3rd-order tensor with dimensions p× q×m.

This is the same m× 1 row vector in (2), but with f replaced by the p× q matrix F , i.e.:

∂F

∂x
=

[
∂F

∂x1

∂F

∂x2
· · · ∂F

∂xm

]
(14)
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4 Operations and Examples

4.1 Commutation

If things normally don’t commute (such as for matrices, AB 6= BA), then order should be
maintained when taking derivatives. If things normally commute (such as for vector inner
product, a·b = b·a), their order can be switched when taking derivatives. Output dimensions
must always come out right.

For example, let f(x)
n×1

= (aT

1×m
x)
m×1

b
n×1

. The derivative
∂f

∂x
should be a n×m matrix. Keeping

order fixed, we get
∂f

∂x
= aT ∂x

∂x
b = aT Ib = aT b. This is a scalar, which is wrong! The solution?

Note that
(
aTx

)
is a scalar, which can sit either to the right or the left of vector b, i.e. ordering

doesn’t really matter. Rewriting f(x) = b
(
aTx

)
, we get

∂f

∂x
= baT ∂x

∂x
= baT I = baT , which

is the correct n×m matrix.

If this seems confusing, it might be useful to take a simple example with low values for m and
n, and write out the full derivative in matrix form as shown in (4). The resulting matrix will
be baT .

4.2 Derivative of a transposed vector

The derivative of a transposed vector w.r.t itself is the identity matrix, but the transpose
gets applied to everything after. For example, let f(w) = (y − wTx)2 = y2 −

(
wTx

)
y −

y
(
wTx

)
+
(
wTx

) (
wTx

)
, where y and x are not a function of w. Taking derivative of the

terms individually:

• ∂y2

∂w
= 0T , i.e. a row vector of all 0s.

•
∂
(
wTx

)
y

∂w
=

∂wT

∂w
xy = (xy)

T
= yTxT . Since y is a scalar, this is simply yxT .

•
∂y
(
wTx

)
∂w

= y
∂wT

∂w
x = yxT

•
∂
(
wTx

) (
wTx

)
∂w

=
∂wT

∂w
x
(
wTx

)
+
(
wTx

) ∂wT

∂w
x =

(
xTw

)
xT +

(
wTx

)
xT . Since vector

inner products commute, this is 2
(
wTx

)
xT .

So
∂f

∂w
= −2yxT + 2

(
wTx

)
xT

4.3 Dealing with tensors

A tensor of dimensions p× q × n×m (such as given in (1)) can be pre- and post-multiplied by
vectors just like an ordinary matrix. These vectors must be compatible with the inner matrices

6



of dimensions p× q, i.e. for each inner matrix, pre-multiply with a 1× p row vector and post-
multiply with a q × 1 column vector to get a scalar. This gives a final matrix of dimensions
n×m.

Example: f(W ) = aT

1×m
W
m×n

b
n×1

. This is a scalar, so
∂f

∂W
should be a matrix which has

transposed dimensions as W , i.e. n ×m. Now,
∂f

∂W
= aT ∂W

∂W
b, where

∂W

∂W
has dimensions

m× n× n×m. For example if m = 3, n = 2, then:

∂W

∂W
=



1 0
0 0
0 0

 0 0
1 0
0 0

 0 0
0 0
1 0


0 1

0 0
0 0

 0 0
0 1
0 0

 0 0
0 0
0 1




(15)

Note that the (i, j)th inner matrix has a 1 in its (j, i)th position. Pre- and post-multiplying the
(i, j)th inner matrix with aT and b gives ajbi, where i ∈ {1, 2} and j ∈ {1, 2, 3}. So:

aT ∂W

∂W
b =

[
a1b1 a2b1 a3b1
a1b2 a2b2 a3b2

]
(16)

Thus,
∂f

∂W
= baT .

4.4 Gradient Example: L2 Norm

Problem: Given f(x) = ‖x− a‖2, find ∇xf .

Note that ‖x− a‖2 =
√

(x− a)T (x− a), which is a scalar. So the derivative will be a row
vector and gradient will be a column vector of the same dimension as x. Let’s use the chain
rule:

∂f

∂x
=

∂
√

(x− a)T (x− a)

∂(x− a)T (x− a)
× ∂(x− a)T (x− a)

∂x
(17)

The first term is a scalar-scalar derivative equal to
1

2
√

(x− a)T (x− a)
. The second term is:

∂(x− a)T (x− a)

∂x
=

∂
(
xTx− aTx− xTa + aTa

)
∂x

(18)

=
(
xT + xT

)
− aT − aT + 0T

= 2
(
xT − aT

)
So

∂f

∂x
=

xT − aT√
(x− a)T (x− a)

.

So ∇xf =
x− a

‖x− a‖2
, which is basically the unit displacement vector from a to x. This means

that to get maximum increase in f(x), one should move away from a along the straight line
joining a and x. Alternatively, to get maximum decrease in f(x), one should move from x
directly towards a, which makes sense geometrically.
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5 Notes and Further Reading

The chain rule and product rule do not always hold when dealing with matrices. However,
some modified forms can hold when using the Trace(·) function. For a full list of derivatives,
the reader should consult a textbook or websites such as Wikipedia’s page on Matrix calculus.
Keep in mind that some texts may use denominator layout convention, where results will look
different.
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