Matrix Calculus

Sourya Dey

1 Notation

- Scalars are written as lower case letters.
- Vectors are written as lower case bold letters, such as x, and can be either row (dimensions $1 \times n$) or column (dimensions $n \times 1$). Column vectors are the default choice, unless otherwise mentioned. Individual elements are indexed by subscripts, such as x_i ($i \in \{1, \dots, n\}$).
- Matrices are written as upper case bold letters, such as X, and have dimensions $m \times n$ corresponding to m rows and n columns. Individual elements are indexed by double subscripts for row and column, such as X_{ij} ($i \in \{1, \dots, m\}, j \in \{1, \dots, n\}$).
- Occasionally higher order tensors occur, such as 3rd order with dimensions $m \times n \times p$, etc.

Note that a matrix is a 2nd order tensor. A row vector is a matrix with 1 row, and a column vector is a matrix with 1 column. A scalar is a matrix with 1 row and 1 column. Essentially, scalars and vectors are special cases of matrices.

The **derivative** of f with respect to x is $\frac{\partial f}{\partial x}$. Both x and f can be a scalar, vector, or matrix, leading to 9 types of derivatives. The **gradient** of f w.r.t x is $\nabla_x f = \left(\frac{\partial f}{\partial x}\right)^T$, i.e. **gradient is transpose of derivative**. The gradient at any point x_0 in the domain has a physical interpretation, its direction is the direction of maximum increase of the function f at the point x_0 , and its magnitude is the rate of increase in that direction. We do not generally deal with the gradient when x is a scalar.

2 Basic Rules

This document follows numerator layout convention. There is an alternative denominator layout convention, where several results are transposed. *Do not mix different layout conventions*.

We'll first state the most general matrix-matrix derivative type. All other types are simplifications since scalars and vectors are special cases of matrices. Consider a function $F(\cdot)$ which maps $m \times n$ matrices to $p \times q$ matrices, i.e. domain $\subset \mathbb{R}^{m \times n}$ and range $\subset \mathbb{R}^{p \times q}$. So, $F(\cdot): \underset{m \times n}{X} \to F(X)$. Its derivative $\frac{\partial F}{\partial X}$ is a 4th order tensor of dimensions $p \times q \times n \times m$. This is an outer matrix of dimensions $n \times m$ (transposed dimensions of the denominator X), with

each element being a $p \times q$ inner matrix (same dimensions as the numerator F). It is given as:

$$\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{X}} = \begin{bmatrix} \frac{\partial \boldsymbol{F}}{\partial X_{1,1}} & \cdots & \frac{\partial \boldsymbol{F}}{\partial X_{m,1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \boldsymbol{F}}{\partial X_{1,n}} & \cdots & \frac{\partial \boldsymbol{F}}{\partial X_{m,n}} \end{bmatrix}$$
(1a)

which has n rows and m columns, and the (i, j)th element is given as:

$$\frac{\partial \boldsymbol{F}}{\partial X_{i,j}} = \begin{bmatrix} \frac{\partial F_{1,1}}{\partial X_{i,j}} & \cdots & \frac{\partial F_{1,q}}{\partial X_{i,j}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{p,1}}{\partial X_{i,j}} & \cdots & \frac{\partial F_{p,q}}{\partial X_{i,j}} \end{bmatrix}$$
(1b)

which has p rows and q columns.

Whew! Now that that's out of the way, let's get to some general rules (for the following, x and y can represent scalar, vector or matrix):

• The derivative $\frac{\partial y}{\partial x}$ always has outer matrix dimensions = transposed dimensions of denominator x, and each individual element (inner matrix) has dimensions = same dimensions of numerator y. If you do a calculation and the dimension doesn't come out right, the answer is not correct.

• Derivatives usually obey the chain rule, i.e.
$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g(x))}{\partial g(x)} \frac{\partial g(x)}{\partial x}$$
.

• Derivatives usually obey the product rule, i.e. $\frac{\partial f(x)g(x)}{\partial x} = f(x)\frac{\partial g(x)}{\partial x} + g(x)\frac{\partial f(x)}{\partial x}$.

3 Types of derivatives

3.1 Scalar by scalar

Nothing special here. The derivative is a scalar, and can also be written as f'(x). For example, if $f(x) = \sin x$, then $f'(x) = \cos x$.

3.2 Scalar by vector

 $f(\cdot): \underset{m\times 1}{\pmb{x}} \to f({\pmb{x}}).$ For this, the derivative is a $1\times m$ row vector:

$$\frac{\partial f}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_m} \end{bmatrix}$$
(2)

The gradient $\nabla_{\boldsymbol{x}} f$ is its transposed column vector.

3.3 Vector by scalar

 $\pmb{f}(\cdot): \underset{1\times 1}{\pmb{x}} \to \underset{n\times 1}{f(\pmb{x})}.$ For this, the derivative is a $n\times 1$ column vector:

$$\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial \boldsymbol{x}} \\ \frac{\partial f_2}{\partial \boldsymbol{x}} \\ \vdots \\ \frac{\partial f_n}{\partial \boldsymbol{x}} \end{bmatrix}$$
(3)

3.4 Vector by vector

 $f(\cdot): \underset{m \times 1}{x} \to \underset{n \times 1}{f(x)}$. Derivative, also known as the **Jacobian**, is a matrix of dimensions $n \times m$. Its (i, j)th element is the scalar derivative of the *i*th output component w.r.t the *j*th input component, i.e.:

$$\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_m} \end{bmatrix}$$
(4)

3.4.1 Special case – Vectorized scalar function

This is a scalar-scalar function applied element-wise to a vector, and is denoted by $\underline{f}(\cdot) : \underset{m \ge 1}{\boldsymbol{x}} \to \underline{f}(\boldsymbol{x})$. For example:

 $m \times 1$

$$\underline{f}\left(\begin{bmatrix}x_1\\x_2\\\vdots\\x_m\end{bmatrix}\right) = \begin{bmatrix}f(x_1)\\f(x_2)\\\vdots\\f(x_m)\end{bmatrix}$$
(5)

In this case, both the derivative and gradient are the same $m \times m$ diagonal matrix, given as:

$$\nabla_{\boldsymbol{x}}\underline{f} = \frac{\partial \underline{f}}{\partial \boldsymbol{x}} = \begin{bmatrix} f'(x_1) & & \mathbf{0} \\ & f'(x_2) & & \\ & & \ddots & \\ \mathbf{0} & & & f'(x_m) \end{bmatrix}$$
(6)

where $f'(x_i) = \frac{\partial f(x_i)}{\partial x_i}$.

Note: Some texts take the derivative of a vectorized scalar function by taking element-wise derivatives to get a $m \times 1$ vector. To avoid confusion with (6), we will refer to this as $f'(\mathbf{x})$.

$$\underline{f}'(\boldsymbol{x}) = \begin{bmatrix} f'(x_1) \\ f'(x_2) \\ \vdots \\ f'(x_m) \end{bmatrix}$$
(7)

To realize the effect of this, let's say we want to multiply the gradient from (6) with some m-dimensional vector \boldsymbol{a} . This would result in:

$$\left(\nabla_{\boldsymbol{x}}\underline{f}\right)\boldsymbol{a} = \begin{bmatrix} f'(x_1) a_1 \\ f'(x_2) a_2 \\ \vdots \\ f'(x_m) a_m \end{bmatrix}$$
(8)

Achieving the same result with $f'(\mathbf{x})$ from (7) would require the Hadamard product \circ , defined as element-wise multiplication of 2 vectors:

$$\underline{f}'(\boldsymbol{x}) \circ \boldsymbol{a} = \begin{bmatrix} f'(x_1) a_1 \\ f'(x_2) a_2 \\ \vdots \\ f'(x_m) a_m \end{bmatrix}$$
(9)

3.4.2 Special Case – Hessian

Consider the type of function in Sec. 3.2, i.e. $f(\cdot) : \underset{m \times 1}{\boldsymbol{x}} \to \underset{1 \times 1}{f(\boldsymbol{x})}$. Its gradient is a vector-to-vector function given as $\nabla_{\boldsymbol{x}} f(\cdot) : \underset{m \times 1}{\boldsymbol{x}} \to \nabla_{\boldsymbol{x}} f(\boldsymbol{x})$. The transpose of its derivative is the Hessian:

$$\boldsymbol{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_m \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_m^2} \end{bmatrix}$$
(10)

i.e. $\boldsymbol{H} = \left(\frac{\partial \nabla_{\boldsymbol{x}} f}{\partial \boldsymbol{x}}\right)^T$. If derivatives are continuous, then $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$, so the Hessian is symmetric.

3.5 Scalar by matrix

 $f(\cdot): \underset{m\times n}{\pmb{X}} \to f({\pmb{X}}).$ In this case, the derivative is a $n\times m$ matrix:

$$\frac{\partial f}{\partial \boldsymbol{X}} = \begin{bmatrix} \frac{\partial f}{\partial X_{1,1}} & \cdots & \frac{\partial f}{\partial X_{m,1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial X_{1,n}} & \cdots & \frac{\partial f}{\partial X_{m,n}} \end{bmatrix}$$
(11)

The gradient has the same dimensions as the input matrix, i.e. $m \times n$.

3.6 Matrix by scalar

 $f(\cdot): \underset{1\times 1}{x} \to {\pmb F}(x).$ In this case, the derivative is a $p\times q$ matrix:

$$\frac{\partial \boldsymbol{F}}{\partial x} = \begin{bmatrix} \frac{\partial F_{1,1}}{\partial x} & \cdots & \frac{\partial F_{1,q}}{\partial x} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{p,1}}{\partial x} & \cdots & \frac{\partial F_{p,q}}{\partial x} \end{bmatrix}$$
(12)

3.7 Vector by matrix

 $f(\cdot): \underset{m \times n}{\mathbf{X}} \to f(\mathbf{X})$. In this case, the derivative is a 3rd-order tensor with dimensions $p \times n \times m$. This is the same $n \times m$ matrix in (11), but with f replaced by the p-dimensional vector f, i.e.:

$$\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{X}} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial X_{1,1}} & \cdots & \frac{\partial \boldsymbol{f}}{\partial X_{m,1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \boldsymbol{f}}{\partial X_{1,n}} & \cdots & \frac{\partial \boldsymbol{f}}{\partial X_{m,n}} \end{bmatrix}$$
(13)

3.8 Matrix by vector

 $F(\cdot): \underset{m \times 1}{x} \to F(x)$. In this case, the derivative is a 3rd-order tensor with dimensions $p \times q \times m$. This is the same $m \times 1$ row vector in (2), but with f replaced by the $p \times q$ matrix F, i.e.:

$$\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial \boldsymbol{F}}{\partial x_1} & \frac{\partial \boldsymbol{F}}{\partial x_2} & \cdots & \frac{\partial \boldsymbol{F}}{\partial x_m} \end{bmatrix}$$
(14)

4 Operations and Examples

4.1 Commutation

If things normally don't commute (such as for matrices, $AB \neq BA$), then order should be maintained when taking derivatives. If things normally commute (such as for vector inner product, $a \cdot b = b \cdot a$), their order can be switched when taking derivatives. Output dimensions must always come out right.

For example, let $\mathbf{f}(\mathbf{x}) = (\mathbf{a}^T \quad \mathbf{x}) \quad \mathbf{b}_{n \times 1}$. The derivative $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ should be a $n \times m$ matrix. Keeping order fixed, we get $\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \mathbf{a}^T \frac{\partial \mathbf{x}}{\partial \mathbf{x}} \mathbf{b} = \mathbf{a}^T I \mathbf{b} = \mathbf{a}^T \mathbf{b}$. This is a scalar, which is wrong! The solution? Note that $(\mathbf{a}^T \mathbf{x})$ is a scalar, which can sit either to the right or the left of vector \mathbf{b} , i.e. ordering doesn't really matter. Rewriting $\mathbf{f}(\mathbf{x}) = \mathbf{b} (\mathbf{a}^T \mathbf{x})$, we get $\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \mathbf{b} \mathbf{a}^T I = \mathbf{b} \mathbf{a}^T$, which is the correct $n \times m$ matrix.

If this seems confusing, it might be useful to take a simple example with low values for m and n, and write out the full derivative in matrix form as shown in (4). The resulting matrix will be ba^{T} .

4.2 Derivative of a transposed vector

The derivative of a transposed vector w.r.t itself is the identity matrix, but the transpose gets applied to everything *after*. For example, let $f(\boldsymbol{w}) = (y - \boldsymbol{w}^T \boldsymbol{x})^2 = y^2 - (\boldsymbol{w}^T \boldsymbol{x}) y - y(\boldsymbol{w}^T \boldsymbol{x}) + (\boldsymbol{w}^T \boldsymbol{x})(\boldsymbol{w}^T \boldsymbol{x})$, where y and x are not a function of \boldsymbol{w} . Taking derivative of the terms individually:

- $\frac{\partial y^2}{\partial \boldsymbol{w}} = \boldsymbol{0}^T$, i.e. a row vector of all 0s.
- $\frac{\partial (\boldsymbol{w}^T \boldsymbol{x}) y}{\partial \boldsymbol{w}} = \frac{\partial \boldsymbol{w}^T}{\partial \boldsymbol{w}} \boldsymbol{x} \boldsymbol{y} = (\boldsymbol{x} \boldsymbol{y})^T = \boldsymbol{y}^T \boldsymbol{x}^T$. Since \boldsymbol{y} is a scalar, this is simply $\boldsymbol{y} \boldsymbol{x}^T$.
- $\frac{\partial y(\boldsymbol{w}^T \boldsymbol{x})}{\partial \boldsymbol{w}} = y \frac{\partial \boldsymbol{w}^T}{\partial \boldsymbol{w}} \boldsymbol{x} = y \boldsymbol{x}^T$
- $\frac{\partial (\boldsymbol{w}^T \boldsymbol{x}) (\boldsymbol{w}^T \boldsymbol{x})}{\partial \boldsymbol{w}} = \frac{\partial \boldsymbol{w}^T}{\partial \boldsymbol{w}} \boldsymbol{x} (\boldsymbol{w}^T \boldsymbol{x}) + (\boldsymbol{w}^T \boldsymbol{x}) \frac{\partial \boldsymbol{w}^T}{\partial \boldsymbol{w}} \boldsymbol{x} = (\boldsymbol{x}^T \boldsymbol{w}) \boldsymbol{x}^T + (\boldsymbol{w}^T \boldsymbol{x}) \boldsymbol{x}^T.$ Since vector inner products commute, this is 2 $(\boldsymbol{w}^T \boldsymbol{x}) \boldsymbol{x}^T.$

So
$$\frac{\partial f}{\partial \boldsymbol{w}} = -2y\boldsymbol{x}^T + 2\left(\boldsymbol{w}^T\boldsymbol{x}\right)\boldsymbol{x}^T$$

4.3 Dealing with tensors

A tensor of dimensions $p \times q \times n \times m$ (such as given in (1)) can be pre- and post-multiplied by vectors just like an ordinary matrix. These vectors must be compatible with the inner matrices

of dimensions $p \times q$, i.e. for each inner matrix, pre-multiply with a $1 \times p$ row vector and postmultiply with a $q \times 1$ column vector to get a scalar. This gives a final matrix of dimensions $n \times m$.

Example: $f(\mathbf{W}) = \mathbf{a}_{1 \times m}^T \mathbf{W}_{m \times n} \mathbf{b}_{n \times 1}$. This is a scalar, so $\frac{\partial f}{\partial \mathbf{W}}$ should be a matrix which has transposed dimensions as \mathbf{W} , i.e. $n \times m$. Now, $\frac{\partial f}{\partial \mathbf{W}} = \mathbf{a}^T \frac{\partial \mathbf{W}}{\partial \mathbf{W}} \mathbf{b}$, where $\frac{\partial \mathbf{W}}{\partial \mathbf{W}}$ has dimensions $m \times n \times n \times m$. For example if m = 3, n = 2, then:

$$\frac{\partial \boldsymbol{W}}{\partial \boldsymbol{W}} = \begin{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$$
(15)

Note that the (i, j)th inner matrix has a 1 in its (j, i)th position. Pre- and post-multiplying the (i, j)th inner matrix with a^T and b gives $a_j b_i$, where $i \in \{1, 2\}$ and $j \in \{1, 2, 3\}$. So:

$$\boldsymbol{a}^{T} \frac{\partial \boldsymbol{W}}{\partial \boldsymbol{W}} \boldsymbol{b} = \begin{bmatrix} a_{1}b_{1} & a_{2}b_{1} & a_{3}b_{1} \\ a_{1}b_{2} & a_{2}b_{2} & a_{3}b_{2} \end{bmatrix}$$
(16)

Thus, $\frac{\partial f}{\partial \boldsymbol{W}} = \boldsymbol{b} \boldsymbol{a}^T$.

4.4 Gradient Example: L2 Norm

Problem: Given $f(\boldsymbol{x}) = \|\boldsymbol{x} - \boldsymbol{a}\|_2$, find $\nabla_{\boldsymbol{x}} f$.

Note that $\|\boldsymbol{x} - \boldsymbol{a}\|_2 = \sqrt{(\boldsymbol{x} - \boldsymbol{a})^T (\boldsymbol{x} - \boldsymbol{a})}$, which is a scalar. So the derivative will be a row vector and gradient will be a column vector of the same dimension as \boldsymbol{x} . Let's use the chain rule:

$$\frac{\partial f}{\partial \boldsymbol{x}} = \frac{\partial \sqrt{(\boldsymbol{x} - \boldsymbol{a})^T (\boldsymbol{x} - \boldsymbol{a})}}{\partial (\boldsymbol{x} - \boldsymbol{a})^T (\boldsymbol{x} - \boldsymbol{a})} \times \frac{\partial (\boldsymbol{x} - \boldsymbol{a})^T (\boldsymbol{x} - \boldsymbol{a})}{\partial \boldsymbol{x}}$$
(17)

The first term is a scalar-scalar derivative equal to $\frac{1}{2\sqrt{(x-a)^T(x-a)}}$. The second term is:

$$\frac{\partial (\boldsymbol{x} - \boldsymbol{a})^T (\boldsymbol{x} - \boldsymbol{a})}{\partial \boldsymbol{x}} = \frac{\partial \left(\boldsymbol{x}^T \boldsymbol{x} - \boldsymbol{a}^T \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{a} + \boldsymbol{a}^T \boldsymbol{a} \right)}{\partial \boldsymbol{x}}$$

$$= (\boldsymbol{x}^T + \boldsymbol{x}^T) - \boldsymbol{a}^T - \boldsymbol{a}^T + \boldsymbol{0}^T$$

$$= 2 \left(\boldsymbol{x}^T - \boldsymbol{a}^T \right)$$
(18)

So $\frac{\partial f}{\partial x} = \frac{x^T - a^T}{\sqrt{(x-a)^T (x-a)}}.$

So $\nabla_{\boldsymbol{x}} f = \frac{\boldsymbol{x} - \boldsymbol{a}}{\|\boldsymbol{x} - \boldsymbol{a}\|_2}$, which is basically the unit displacement vector from \boldsymbol{a} to \boldsymbol{x} . This means that to get maximum increase in $f(\boldsymbol{x})$, one should move away from \boldsymbol{a} along the straight line joining \boldsymbol{a} and \boldsymbol{x} . Alternatively, to get maximum decrease in $f(\boldsymbol{x})$, one should move from \boldsymbol{x} directly towards \boldsymbol{a} , which makes sense geometrically.

5 Notes and Further Reading

The chain rule and product rule do not always hold when dealing with matrices. However, some modified forms can hold when using the $Trace(\cdot)$ function. For a full list of derivatives, the reader should consult a textbook or websites such as Wikipedia's page on Matrix calculus. Keep in mind that some texts may use denominator layout convention, where results will look different.